ErMiao San (EMS) is composed of the Cortex Phellodendri chinensis and Atractylodes lancea, and it has the function of eliminating heat and excreting dampness in terms of traditional Chinese medicine to damp heat syndrome. Previous reports indicate that EMS possesses anti-inflammatory activity; however, its action on angiogenesis of rheumatoid arthritis (RA) has not been clarified. The present study aims to determine the antiangiogenic activity of EMS in collagen-induced arthritis (CIA) mice and in various angiogenesis models. Our data showed that EMS (5 g/kg) markedly reduced the immature blood vessels in synovial membrane tissues of inflamed joints from CIA mice. It also inhibited vascular endothelial growth factor (VEGF)-induced microvessel sprout formation ex vivo. Meanwhile, EMS suppressed VEGF-induced migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, EMS significantly reduced the expression of angiogenic activators including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in synovium of CIA mice. More interestingly, EMS blocked the autophosphorylation of VEGF-induced JAK1, STAT1, and STAT6 in CIA mice and VEGF-induced HUVECs. These findings suggest for the first time that EMS possesses the antiangiogenic effect in RA in vivo, ex vivo, and in vitro by interrupting the targeting of JAK/STAT activation.