A new methodology for distinguishing between specific and nonspecific protein-ligand complexes in nanoelectrospray ionization mass spectrometry (nanoES-MS) is described. The method involves the addition of an appropriate reference protein (P(ref)), which does not bind specifically to any of the solution components, to the nanoES solution containing the protein(s) and ligand(s) of interest. The occurrence of nonspecific protein-ligand binding is monitored by the appearance of nonspecific (P(ref) + ligand) complexes in the nanoES mass spectrum. Furthermore, the fraction of P(ref) undergoing nonspecific ligand binding provides a quantitative measure of the contribution of nonspecific binding to the measured intensities of protein and specific protein-ligand complexes. As a result, errors introduced into protein-ligand association constants, K(assoc), as determined with nanoES-MS, by nonspecific ligand binding can be corrected. The principal assumptions on which this methodology is based, namely, that the fraction of proteins and protein complexes that engage in nonspecific ligand binding during the nanoES process is determined by the number of free ligand molecules in the offspring droplets leading to gaseous ions and is independent of the size and structure of the protein or protein complex, are shown to be generally valid. The application of the method for the determination of K(assoc) for two protein-carbohydrate complexes, under conditions where nonspecific ligand binding is prevalent, is demonstrated.
Biofilm infections can induce chronic inflammation and stall the normal orchestrated course of wound-healing cascades. Herein, pH-switchable antimicrobial hydrogel with nanofiber networks for biofilm eradication and rescuing stalled healing in chronic wounds is reported on the basis of the self-assembly of a designed octapeptide (IKFQFHFD) at neutral pH. This hydrogel is biocompatible and exhibits an acidic pH (pathological environment of infected chronic wounds)-switchable broad-spectrum antimicrobial effect via a mechanism involving cell wall and membrane disruption. The antimicrobial activity of hydrogel is derived from its acidic pH-dependent nanofiber network destabilization and activated release of IKFQFHFD, which is antimicrobial only at acidic pH due to the antimicrobial peptide-like molecular structure. In addition, supramolecular nanofiber networks loaded with drugs of cypate (photothermal agent) and proline (procollagen component) are further developed. In vitro experiments show that loaded drugs exhibit acidic pH (pH ∼ 5.5)-responsive release profiles, and synergistic biofilm eradication and subsequent healing cascade activation of cells proliferation are achieved on the basis of the supramolecular nanofiber networks. Remarkably, the nanofiber networks of hydrogel enable in vivo complete healing of MRSA biofilm infected wound in diabetic mice within 20 days, showing great potential as promising chronic wound dressings. The proposed synergistic strategy for eradicating biofilm and activating subsequent healing cascades may offer a powerful modality for the management of clinical chronic wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.