SUMMARY Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo . We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing.
There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution. Genetic studies implicate , a gene encoding the neuronal glutamate transporter EAAC1, with obsessive-compulsive disorder (OCD). EAAC1 is abundantly expressed in the striatum, a brain region that is hyperactive in OCD. What remains unknown is how EAAC1 shapes synaptic function in the striatum. Our findings show that EAAC1 limits activation of metabotropic glutamate receptors (mGluRIs) in the striatum and, by doing so, promotes D1 dopamine receptor (D1R) expression. Targeted activation of signaling cascades coupled to mGluRIs in mice expressing EAAC1 reduces D1R expression and triggers repeated motor behaviors. These findings provide new information on the molecular basis of OCD and suggest new avenues for its treatment.
Most animal species operate according to a 24-hour period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN is known to modulate hippocampal-dependent memory processes, but the molecular and cellular mechanisms that account for these effects remain largely unknown. Here, we show that there are cell-type specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors, whereas astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation and integration of temporally clustered excitatory synaptic inputs. These findings identify important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus and alter the temporal dynamics of learning and memory processing.
There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here we use behavioral, electrophysiological, molecular and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-expressing striatal neurons of mice expressing EAAC1 leads to reduced D1R expression and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution.SIGNIFICANCE STATEMENTGenetic studies implicate Slc1a1, a gene encoding the neuronal glutamate transporter EAAC1, with obsessive-compulsive disorder (OCD). EAAC1 is abundantly expressed in the striatum, a brain region that is hyperactive in OCD. What remains unknown is how EAAC1 shapes synaptic function in the striatum. Our findings show that EAAC1 limits activation of metabotropic glutamate receptors (mGluRI) in the striatum and, by doing so, it promotes D1R expression. Targeted activation of signaling cascades coupled to mGluRI in mice expressing EAAC1 reduces D1R expression and triggers repeated motor behaviors in mice. These findings provide new information on the molecular basis of OCD and suggest new avenues for its treatment.
We used phase microscopy and Raman spectroscopic measurements to assess the response of in vitro rat C6 glial cells following methamphetamine treatment in real time. Digital holographic microscopy (DHM) and three-dimensional (3-D) tomographic nanoscopy allow measurements of live cell cultures, which yield information about cell volume changes. Tomographic phase imaging provides 3-D information about the refractive index distribution associated with the morphology of biological samples. DHM provides similar information, but for a larger population of cells. Morphological changes in cells are associated with alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy measurements provide information about chemical changes within the cells. Our Raman data indicate that the chemical changes in proteins preceded morphological changes, which were seen with DHM. Our study also emphasizes that tomographic phase imaging, DHM, and Raman spectroscopy are imaging tools that can be utilized for noninvasive simultaneous monitoring of morphological and chemical changes in cells during apoptosis and can also be used to monitor other dynamic cell processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.