Super-oscillation phenomenon has attracted considerable interests due to its great ability of far-field super-resolution imaging. However, most super-oscillatory lenses were limited by chromatic aberration and single functionality, hence deeply restricting the flexibility of the super-oscillatory devices in practical applications. Here, an achromatic polarization-multiplexed super-oscillatory metasurface has been proposed to realize flexible light field modulations at different colors, i.e. 473 nm (blue), 532 nm (green), and 632.8 nm (red). The super-oscillatory metasurface can achieve achromatic diffraction-limited focusing under x-polarized light illumination and achromatic sub-diffraction focusing under y-polarized light illumination. Furthermore, it can also realize multi-wavelength super-oscillatory achromatic focusing with different super-resolution abilities. The proposed method could simplify the super-resolution optical imaging system and is expected to have widespread applications in color imaging, microscopy, and machine vision.
Unlike traditional THz imaging system, we first report a design of 0.2THz stepped frequency radar system, and prove its feasibility by simulation. The stepped frequency radar working from 200GHz to 210GHz can provide centimeter accuracy. To demonstrate the feasibility of our design, we simulate our system by using Advanced Design System (ADS) and Simulink in Matlab. The transmitter line is simulated in ADS, while system-level simulation is carried out in Matlab. The simulation of transmitter is implemented by using parameters from actual products, which can ensure the reality of simulation. In this paper, we will present the methods and results of our simulation. From the results, we can conclude that our design is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.