Recent studies about wireless multi-hop networks mainly focus on two aspects, network performance and network strategy. A mass of models and algorithms about network connectivity, path reliability, and node mobility have been proposed to improve network performance. However, hop count, an important factor of wireless multi-hop networks, is rarely researched. In this article, we propose some feasible research methods to figure out the connections between hop count and network connectivity, and path reliability and node mobility, respectively. By modeling the network connectivity, path reliability, and node mobility, we get the maximum hop count of arbitrary wireless multi-hop network. This study shows that the hop count limitation has great effect on network stability. With an increase in hop count, the network stability gets worse. Thinking about this situation, we propose some feasible advices to avoid the hop count limitation problem, which may provide some useful theoretical foundation for further study on wireless multi-hop networks.
Energy efficiency has always been a hot issue in wireless sensor networks. A lot of energy-efficient algorithms have been proposed to reduce energy consumption in traditional wireless sensor networks. With the emergence of softwaredefined networking, researchers have demonstrated the feasibility of software-defined networking over traditional wireless sensor networks. Thus, energy-efficient algorithms in software-defined wireless sensor networks have been studied. In this article, we propose an energy-efficient algorithm based on multi-energy-space in software-defined wireless sensor networks. First, we propose a novel architecture of software-defined wireless sensor networks according to current research on software-defined wireless sensor networks. Then, we introduce the concept of multi-energy-space which is based on the residual energy. Based on the novel architecture of software-defined wireless sensor networks and the concept of multi-energy-space, we give a detailed introduction of the main idea of our multi-energy-space-based energyefficient algorithm. Simulation results show that our proposed algorithm performs better in energy consumption balance and network lifetime extension compared with the typical energy-efficient algorithms in traditional wireless sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.