Biomethylation is considered a major detoxification pathway for inorganic arsenicals (iAs). According to the postulated metabolic scheme, the methylation of iAs yields methylated metabolites in which arsenic is present in both pentavalent and trivalent forms. Pentavalent mono- and dimethylated arsenicals are less acutely toxic than iAs. However, little is known about the toxicity of trivalent methylated species. In the work reported here the toxicities of iAs and trivalent and pentavalent methylated arsenicals were examined in cultured human cells derived from tissues that are considered a major site for iAs methylation (liver) or targets for carcinogenic effects associated with exposure to iAs (skin, urinary bladder, and lung). To characterize the role of methylation in the protection against toxicity of arsenicals, the capacities of cells to produce methylated metabolites were also examined. In addition to human cells, primary rat hepatocytes were used as methylating controls. Among the arsenicals examined, trivalent monomethylated species were the most cytotoxic in all cell types. Trivalent dimethylated arsenicals were at least as cytotoxic as trivalent iAs (arsenite) for most cell types. Pentavalent arsenicals were significantly less cytotoxic than their trivalent analogs. Among the cell types examined, primary rat hepatocytes exhibited the greatest methylation capacity for iAs followed by primary human hepatocytes, epidermal keratinocytes, and bronchial epithelial cells. Cells derived from human bladder did not methylate iAs. There was no apparent correlation between susceptibility of cells to arsenic toxicity and their capacity to methylate iAs. These results suggest that (1) trivalent methylated arsenicals, intermediary products of arsenic methylation, may significantly contribute to the adverse effects associated with exposure to iAs, and (2) high methylation capacity does not protect cells from the acute toxicity of trivalent arsenicals.
Exposure of several human populations to arsenic has been associated with a high incidence of detrimental dermatological and carcinogenic effects. To date, studies examining the immunotoxic effects of arsenic in humans, and specifically in children, are lacking. Therefore, we evaluated several parameters of immunological status in a group of children exposed to arsenic through their drinking water. Peripheral blood mononuclear cells (PBMCs) of 90 children (6 to 10 years old) were collected. Proportions of lymphocyte subpopulations, PBMC mitogenic proliferative response, and urinary arsenic levels were evaluated. Increased urine arsenic levels were associated with a reduced proliferative response to phytohemaglutinin (PHA) stimulation (P=0.005), CD4 subpopulation proportion (P=0.092), CD4/CD8 ratio (P=0.056), and IL-2 secretion levels (P=0.003). Increased arsenic exposure was also associated with an increase in GM-CSF secretion by mononucleated cells (P=0.000). We did not observe changes in CD8, B, or NK cell proportions, nor did we observe changes in the secretion of IL-4, IL-10, or IFN-gamma by PHA-activated PBMCs. These data indicate that arsenic exposure could alter the activation processes of T cells, such that an immunosuppression status that favors opportunistic infections and carcinogenesis is produced together with increased GM-CSF secretion that may be associated with chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.