Hearing-aid (HA) prescription rules (such as NAL-NL2, DSL-v5, and CAM2) are used by HA audiologists to define initial HA settings (e.g., insertion gains, IGs) for patients. This initial fitting is later individually adjusted for each patient to improve clinical outcomes in terms of speech intelligibility and listening comfort. During this fine-tuning stage, speech-intelligibility tests are often carried out with the patient to assess the benefits associated with different HA settings. As these tests tend to be time-consuming and performance on them depends on the patient's level of fatigue and familiarity with the test material, only a limited number of HA settings can be explored. Consequently, it is likely that a suboptimal fitting is used for the patient. Recent studies have shown that automatic speech recognition (ASR) can be used to predict the effects of IGs on speech intelligibility for patients with age-related hearing loss (ARHL). The aim of the present study was to extend this approach by optimizing, in addition to IGs, compression thresholds (CTs). However, increasing the number of parameters to be fitted increases exponentially the number of configurations to be assessed. To limit the number of HA settings to be tested, three random-search (RS) genetic algorithms were used. The resulting new HA fitting method, combining ASR and RS, is referred to as “objective prescription rule based on ASR and random search" (OPRA-RS). Optimal HA settings were computed for 12 audiograms, representing average and individual audiometric profiles typical for various levels of ARHL severity, and associated ASR performances were compared to those obtained with the settings recommended by CAM2. Each RS algorithm was run twice to assess its reliability. For all RS algorithms, ASR scores obtained with OPRA-RS were significantly higher than those associated with CAM2. Each RS algorithm converged on similar optimal HA settings across repetitions. However, significant differences were observed between RS algorithms in terms of maximum ASR performance and processing costs. These promising results open the way to the use of ASR and RS algorithms for the fine-tuning of HAs with potential speech-intelligibility benefits for the patient.
Automatic speech recognition (ASR), when combined with hearing-aid (HA) and hearing-loss (HL) simulations, can predict aided speech-identification performances of persons with age-related hearing loss. ASR can thus be used to evaluate different HA configurations, such as combinations of insertion-gain functions and compression thresholds, in order to optimize HA fitting for a given person. The present study investigated whether, after fixing compression thresholds and insertion gains, a random-search algorithm could be used to optimize time constants (i.e., attack and release times) for 12 audiometric profiles. The insertion gains were either those recommended by the CAM2 prescription rule or those optimized using ASR, while compression thresholds were always optimized using ASR. For each audiometric profile, the random-search algorithm was used to vary time constants with the aim to maximize ASR performance. A HA simulator and a HL simulator simulator were used, respectively, to amplify and to degrade speech stimuli according to the input audiogram. The resulting speech signals were fed to an ASR system for recognition. For each audiogram, 1,000 iterations of the random-search algorithm were used to find the time-constant configuration yielding the highest ASR score. To assess the reproducibility of the results, the random search algorithm was run twice. Optimizing the time constants significantly improved the ASR scores when CAM2 insertion gains were used, but not when using ASR-based gains. Repeating the random search yielded similar ASR scores, but different time-constant configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.