Intelligent transportation systems (ITSs) play an increasingly important role in traffic management and traffic safety. Smart cameras are the most widely used sensors in ITSs. However, cameras suffer from a reduction in detection and positioning accuracy due to target occlusion and external environmental interference, which has become a bottleneck restricting ITS development. This work designs a stable perception system based on a millimeter-wave radar and camera to address these problems. Radar has better ranging accuracy and weather robustness, which is a better complement to camera perception. Based on an improved Gaussian mixture probability hypothesis density (GM-PHD) filter, we also propose an optimal attribute fusion algorithm for target detection and tracking. The algorithm selects the sensors’ optimal measurement attributes to improve the localization accuracy while introducing an adaptive attenuation function and loss tags to ensure the continuity of the target trajectory. The verification experiments of the algorithm and the perception system demonstrate that our scheme can steadily output the classification and high-precision localization information of the target. The proposed framework could guide the design of safer and more efficient ITSs with low costs.
Hand gesture recognition technology plays an important role in human-computer interaction and in-vehicle entertainment. Under in-vehicle conditions, it is a great challenge to design gesture recognition systems due to variable driving conditions, complex backgrounds, and diversified gestures. In this paper, we propose a gesture recognition system based on frequency-modulated continuous-wave (FMCW) radar and transformer for an in-vehicle environment. Firstly, the original range-Doppler maps (RDMs), range-azimuth maps (RAMs), and range-elevation maps (REMs) of the time sequence of each gesture are obtained by radar signal processing. Then we preprocess the obtained data frames by region of interest (ROI) extraction, vibration removal algorithm, background removal algorithm, and standardization. We propose a transformer-based radar gesture recognition network named RGTNet. It fully extracts and fuses the spatial-temporal information of radar feature maps to complete the classification of various gestures. The experimental results show that our method can better complete the eight gesture classification tasks in the in-vehicle environment. The recognition accuracy is 97.56%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.