In this study, an in-depth analysis of the unique set of rosehip samples from 71 Rosa genotypes was conducted with the aim to identify the most suitable ones for applications in the food and pharmaceutical industries based on the content of biologically active compounds. In the first part of our experiments, the antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl assay and the genotypes with the highest values were selected for the follow-up analysis. In the second part of experiments, the major classes of biologically active compounds in rosehips such as carotenoids, tocopherols, flavonoids, and triterpenoic acids were further quantified using liquid chromatography-based techniques. Large variation was observed among all the analyzed compounds with intraspecific variation often hiding interspecific or intersectional differences. The compounds studied herein thus do not provide a sharp tool for chemotaxonomic resolution of the genus Rosa. High intraspecific variation indicates the necessity to screen and utilize individual rose genotypes rather than representatives of the species when searching for sources of biologically active compounds. In the final stage of the study, 10 genotypes were selected for further cultivation and use, based on the highest concentrations of the analyzed biologically active compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.