Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity/vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagomé lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz-transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
Topological spin textures have attracted much attention both for fundamental physics and spintronics applications. Among them, antiskyrmions possess a unique spin configuration with Bloch-type and Néel-type domain walls due to anisotropic Dzyaloshinskii-Moriya interaction (DMI) in the noncentrosymmetric crystal structure. However, antiskyrmions have thus far only been observed in a few Heusler compounds with D2d symmetry. Here, we report a new material Fe1.9Ni0.9Pd0.2P in a different symmetry class (S4 symmetry), where antiskyrmions exist over a wide temperature region including room temperature, and transform to skyrmions upon changing magnetic field and lamella thickness. The periodicity of magnetic textures greatly depends on crystal thickness, and domains with anisotropic sawtooth fractals are observed at the surface of thick crystals, which are attributed to the interplay between dipolar interaction and DMI as governed by
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.