For use in vertebroplasty and kyphoplasty, an acrylic bone cement should possess many characteristics, such as high radiopacity, low and constant viscosity during its application, low value of the maximum temperature reached during the polymerization process (T(max)), a setting time (t(set)) that is neither too low nor too high, and high compressive strength. The objective of this study was to investigate the influence of the powder particle distribution on various properties of one acrylic bone cement; namely, residual monomer content, T(max), t(set), complex viscosity, storage and loss moduli, injectability, and quasi-static compressive strength and modulus. It was found that the formulations that possessed the most suitable complex viscosity-versus-mixing time characteristics are those in which the ratio of the large poly(methyl methacrylate) beads (of mean diameter 118.4 microm) to the small ones (of mean diameter 69.7 microm) was at least 90% w/w. For these formulations, the values of the other properties determined were acceptable.
The utilization of injectable acrylic bone cement is crucial to the outcome of vertebroplasty and kyphoplasty. However, only a few cements that are in clinical use today are formulated specifically for use in these procedures and even these formulations are not regarded as "ideal" injectable bone cements. The aim of this work is to prepare bioactive bone cements by adding strontium hydroxyapatite (SrHA) to a cement formulation based on polymethylmethacrylate. Thus, the cement combines the immediate mechanical support given by the setting of the acrylic matrix with optimum radiopacity and bioactivity due to the incorporation of the SrHA. Formulations of bioactive cement were prepared with 10 and 20 wt% of SrHA as synthesised and after a surface treatment with the monomer. Cements loaded with treated particles showed an enhancement of their handling properties, and hence, an improvement on their rheological behaviour, injectabilities and compressive parameters. Further experiments were also carried out to determine their bioactivity and biocompatibility and results appear in other publication.
In a previous work, we reported the development of acrylic bone cement formulations for application in percutaneous vertebroplasty, by using bismuth salicylate (BS) as the radiopaque agent. Our objective was to obtain high radiopacity along with a therapeutical effect produced by the release of salicylic acid in situ. To follow that study, the setting kinetics and static and dynamical mechanical properties of the BS cements were studied in simulated physiological conditions. Moreover, radiopacity after various times of immersion in saline and the wettability of the cements surfaces were determined. The study finished with the analysis of the biological response. From the results, it can be concluded that physiological conditions did not affect negatively to the cements performance, since all BS-loaded cements fulfilled the ISO standard requirements. Radiopacity of the formulations was maintained over time and cements with BS were found to be biocompatible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.