There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.
A tunable hydrophobicity, from a fully hydrophobic medium to an amphiphilic quasi-solution, has been obtained in the interlayer space of a synthetic high charged mica by ion exchange reaction with amine cations. The structural and intercalation properties of the hybrids after the exchange with the n-alkylammonium cations: [RNH 3 ] + , [RNH(CH 3 ) 2 ] + and [RN(CH 3 ] 3 + with C16 alkyl chain length have been determined by termogravimetric/differential scanning calorimetry analysis (TGA-DSC) and mass spectrometry (MS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM) has been used as a complementary technique to provide new insights into the morphology of the exchanged products. Coverage and cation distribution have been correlated with layer charge and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.