A series of chiral HCNN ligands ((S)-1b−g) (S)-2-(1-aminoethyl)-6-(aryl)pyridine (aryl = 4-MeO-phenyl, 1b; 4-CF3-phenyl, 1c; 3,5-di-Me-phenyl, 1d; 3,5-di-CF3-phenyl, 1e; 1-naphthyl, 1f; 2-naphthyl, 1g) were synthesized starting from commercial 2-acetyl-6-bromopyridine (2), by a chemoenzymatic method involving the dynamic kinetic resolution of the corresponding secondary alcohol (rac-3). The conversion of the resulting (R)-3, obtained in 98% ee, into the homochiral amine ((S)-6), followed by Suzuki coupling with the appropriate arylboronic acids 7b−g, gave access to (S)-1b−g, isolated in 97% ee, with an overall yield up to 50%. The in situ generated pincer complexes [MCl(CNN)(PP)] (M = Ru, Os; PP = Josiphos diphosphine), prepared from [MCl2(PPh3)3], (R,S)-Josiphos diphosphines, and the ligands (S)-1b−g, were found to efficiently catalyze the asymmetric transfer hydrogenation of acetophenone in 2-propanol at 60 °C and in the presence of NaOiPr. On the basis of these data, the 2-naphthyl ruthenium and osmium derivatives [RuCl(CNN)((R,S)-Josiphos*)] (8) (HCNN = (S)-1g) and [OsCl(CNN)(PP)] (PP = (R,S)-Josiphos, 9, and (R,S)-Josiphos*, 10) were isolated from [MCl2(PPh3)3], (R,S)-Josiphos diphosphines, and the ligand (S)-1g. Complexes 8 and 10, displaying the correctly matched chiral PP and CNN− ligands, are highly active and productive catalysts for the transfer hydrogenation of alkyl aryl ketones and methyl pyridyl ketones with TOF = 105−106 h−1, using 0.005 mol % of catalysts and achieving up to 99% ee. The comparison of the catalytic activity of these pincer complexes shows that Ru and Os derivatives display similar rate and enantioselectivity