Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 “for the phage display of peptides and antibodies”. In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Mucopolysaccharidoses (MPS), a group of inherited metabolic disorders caused by deficiency in enzymes involved in degradation of glycosaminoglycans (GAGs), are examples (and models) of monogenic diseases. Accumulation of undegraded GAGs in lysosomes was supposed to be the major cause of MPS symptoms; however, their complexity and variability between particular types of the disease can be hardly explained by such a simple storage mechanism. Here we show that transcriptomic (RNA-seq) analysis of the material derived from fibroblasts of patients suffering from all types and subtypes of MPS, supported by RT-qPCR results, revealed surprisingly large changes in expression of genes involved in various cellular processes, indicating complex mechanisms of MPS. Although each MPS type and subtype was characterized by specific changes in gene expression profile, there were genes with significantly changed expression relative to wild-type cells that could be classified as common for various MPS types, suggesting similar disturbances in cellular processes. Therefore, both common features of all MPS types, and differences between them, might be potentially explained on the basis of changes in certain cellular processes arising from disturbed regulations of genes’ expression. These results may shed a new light on the mechanisms of genetic diseases, indicating how a single mutation can result in complex pathomechanism, due to perturbations in the network of cellular reactions. Moreover, they should be considered in studies on development of novel therapies, suggesting also why currently available treatment methods fail to correct all/most symptoms of MPS. We propose a hypothesis that disturbances in some cellular processes cannot be corrected by simple reduction of GAG levels; thus, combined therapies are necessary which may require improvement of these processes.
Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.