Background: Recent results raised doubts regarding the earlier proposed C-23 hydroxylase function of CYP90A1/CPD in brassinosteroid biosynthesis. Results: The enzymatic role of CYP90A1/CPD is determined by analytical, genetic, and direct biochemical approaches. Conclusion: CYP90A1 catalyzes C-3 oxidation of early brassinosteroid intermediates. Significance: Our results highlight the primary role of the campestanol-independent pathway in brassinosteroid biosynthesis.
SummaryFabry disease (FD) is an X-linked inherited lysosomal storage disorder caused by mutations in the GLA gene, encoding for the enzyme α-galactosidase A. Although hundreds of mutations in the GLA gene have been described, many of them are variants of unknown significance. Here we report a novel GLA mutation, p.Ile239Met, identified in a large Hungarian three-generation family with FD. A 69 year-old female index patient with a clinical history of renal failure, hypertrophic cardiomyopathy, and 2nd degree AV block was screened for mutation in the GLA gene. Genetic screening identified a previously unreported heterozygous mutation in exon 5 of the GLA gene (c.717A>G; p.Ile239Met). Family screening indicated that altogether 6 family members carried the mutation (5 females, 1 male, average age: 55 ± 16 years). Three family members, including the index patient, manifested the cardiac phenotype of hypertrophic cardiomyopathy, while two other family members were diagnosed with left ventricular hypertrophy. Taking affection status as the presence of hypertrophic cardiomyopathy, left ventricular hypertrophy or elevated lyso-Gb3 levels, all affected family members carried the mutation. Linkage analysis of the family gave a two-point LOD score of 2.01 between the affection status and the p.Ile239Met GLA mutation. Lyso-Gb3 levels were elevated in all carrier family members (range: 2.4-13.8 ng/mL; upper limit of normal +2STD: ≤ 1.8 ng/mL). The GLA enzyme level was markedly reduced in the affected male family member (< 0.2 µmol/L/hour; upper limit of normal ± 2STD: ≥ 2.6 µmol/L/hour). We conclude that the p. Ile239Met GLA mutation is a pathogenic mutation for FD associated with predominant cardiac phenotype. (Int Heart J 2017; 58: 454-458)
We assessed the cardiovascular safety of long-term direct-acting oral anticoagulant (DOAC) treatment. A search of the medical literature was performed from inception until May 31, 2019. Inclusion criteria were (1) randomized trial that assessed the clinical efficacy and/or safety of 1 or more DOAC, (2) control group including oral anticoagulation and/or antiplatelet and/or placebo treatment, and (3) the incidence of acute coronary syndrome during follow-up was reported. Fixed-effect and random-effects models were applied. The analyzed outcomes were myocardial infarction (MI), major bleeding, and mortality. Twenty-eight randomized clinical trials (196 761 patients) were included. Rivaroxaban was associated with a 21% reduction in the relative risk of MI when compared to placebo (relative risk [RR]: 0.79 [95% credible interval, CrI: 0.65-0.94]) and a 31% reduction (RR: 0.70 [95% CrI: 0.53-0.89]) when compared to dabigatran. Apixaban resulted in 24% (RR: 0.76 [95% CrI: 0.58-0.99]) and vitamin K antagonists anticoagulation resulted in 19% (RR: 0.81 [95% CrI: 0.65-0.98]) risk reduction compared to dabigatran. The computed probability of being the first best choice of treatment was 61.8% for rivaroxaban. Cardiovascular safety shows considerable heterogeneity among oral anticoagulants. Treatment with rivaroxaban is associated with reduced rate of MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.