Toxic organic pollutants in the aquatic environment cause severe threats to both humans and the global environment. Thus, the development of robust strategies for detection and removal of these organic pollutants is essential. For this purpose, a multifunctional and recyclable membrane by intercalating gold nanoparticles and graphitic carbon nitride into graphene oxide (GNPs/g-C 3 N 4 / GO) is fabricated. The membranes exhibit not only superior surface enhanced Raman scattering (SERS) activity attributed to high preconcentration ability to analytes through π-π and electrostatic interactions, but also excellent catalytic activity due to the enhanced electron-hole separation efficiency. These outstanding properties allow the membrane to be used for highly sensitive detection of rhodamine 6G with a limit of detection of 5.0 × 10 −14 m and self-cleaning by photocatalytic degradation of the adsorbed analytes into inorganic small molecules, thus achieving recyclable SERS application. Furthermore, the excellent SERS activity of the membrane is demonstrated by detection of 4-chlorophenol at less than nanomolar level and no significant SERS or catalytic activity loss was observed when reusability is tested. These results suggest that the GNPs/g-C 3 N 4 /GO membrane provides a new strategy for eliminating traditional, single-use SERS substrates, and expands practical SERS application to simultaneous detection and removal of environmental pollutants.
Ammonium perchlorate (AP) is an oxidizer material that is widely employed in applications ranging from rocketry to airbags. Previous research has suggested that efficient electron transfer plays a critical role in determining the kinetics of catalyzed AP decomposition reactions. Consequently, intimate contact between AP crystals and electron acceptors has the potential to accelerate decomposition kinetics, which motivates the development of conformal coatings with suitably tailored electronic structures. Here, we demonstrate a scalable method for conformally coating AP crystals with two atomically well-defined 2D materials with orthogonal electronic propertiesnamely, pristine graphene, which is a zero-band gap semiconductor that has been shown to be an effective electron acceptor in diverse heterojunctions and hexagonal boron nitride (hBN), which is a wide-band gap electrical insulator. Consistent with an electron transfer mechanism, graphene-coated AP undergoes accelerated decomposition kinetics compared to uncoated (neat) or hBN-coated AP. Through extensive structural characterization including electron microscopy and X-ray diffraction, the effects of AP crystal size and crystallinity are examined. In addition, the accelerated decomposition kinetics of graphene-coated AP are quantified through thermogravimetric analysis, gas chromatography mass spectrometry, and kinetic modeling. Overall, this work establishes pristine graphene as an effective coating for promoting accelerated decomposition of AP, which enhances its utility in various applications.
Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2 nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2 nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2 ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1 that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2 nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.
Memristive systems present a low-power alternative to silicon-based electronics for neuromorphic and in-memory computation. 2D materials have been increasingly explored for memristive applications due to their novel biomimetic functions, ultrathin geometry for ultimate scaling limits, and potential for fabricating large-area, flexible, and printed neuromorphic devices. While the switching mechanism in memristors based on single 2D nanosheets is similar to conventional oxide memristors, the switching mechanism in nanosheet composite films is complicated by the interplay of multiple physical processes and the inaccessibility of the active area in a twoterminal vertical geometry. Here, the authors report thermally activated memristors fabricated from percolating networks of diverse solution-processed 2D semiconductors including MoS 2 , ReS 2 , WS 2 , and InSe. The mechanisms underlying threshold switching and negative differential resistance are elucidated by designing large-area lateral memristors that allow the direct observation of filament and dendrite formation using in situ spatially resolved optical, chemical, and thermal analyses. The high switching ratios (up to 10 3 ) that are achieved at low fields (≈4 kV cm −1 ) are explained by thermally assisted electrical discharge that preferentially occurs at the sharp edges of 2D nanosheets. Overall, this work establishes percolating networks of solutionprocessed 2D semiconductors as a platform for neuromorphic architectures.
α-RuCl 3 is a layered transition metal halide that possesses a range of exotic magnetic, optical, and electronic properties including fractional excitations indicative of a proximate Kitaev quantum spin liquid (QSL). While previous reports have explored these properties on idealized single crystals or mechanically exfoliated samples, the scalable production of α-RuCl 3 nanosheets has not yet been demonstrated. Here, we perform liquid-phase exfoliation (LPE) of α-RuCl 3 through an electrochemically assisted approach, which yields ultrathin, electron-doped α-RuCl 3 nanosheets that are then assembled into electrically conductive large-area thin films. The crystalline integrity of the α-RuCl 3 nanosheets following LPE is confirmed through a wide range of structural and chemical analyses. Moreover, the physical properties of the LPE α-RuCl 3 nanosheets are investigated through electrical, optical, and magnetic characterization methods, which reveal a structural phase transition at 230 K that is consistent with the onset of Kitaev paramagnetism in addition to an antiferromagnetic transition at 2.6 K. Intercalated ions from the electrochemical LPE protocol favorably alter the optical response of the α-RuCl 3 nanosheets, enabling large-area Mott insulator photodetectors that operate at telecommunications-relevant infrared wavelengths near 1.55 μm. These photodetectors show a linear photocurrent response as a function of incident power, which suggests negligible trap-mediated recombination or photothermal effects, ultimately resulting in a photoresponsivity of ≈2 mA/W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.