With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and optoelectronics. Toward that end, several classes of high-performance devices have been reported along with significant progress in understanding their physical properties. Here, we present a review of the architecture, operating principles, and physics of electronic and optoelectronic devices based on ultrathin transition metal dichalcogenide semiconductors. By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on HSi(111), versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 hours in ambient, followed by a ~10 3 decrease in FET current on/off ratio and mobility after 48 hours. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ~10 3 and mobilities of ~100 cm 2 V -1 s -1 for over two weeks in ambient. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications. On increased ambient exposure, the bubble density eventually decreases, evolving into wider and taller bubbles. These bubbles occur in BP, regardless of flake thickness (Fig. S2). In Fig. 2, we therefore use X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy to assess whether chemical modifications, such as the formation of additional chemical bonds or a change in oxidation state, occur in BP upon ambient exposure. Fig. 2A shows P 2p core level XPS spectra of as-exfoliated BP flakes on SiO2 for 0 hrs, 13 hrs, 1, day, 2 days, and 3 days, respectively, of ambient exposure. All spectra are calibrated to the binding energy of adventitious carbon (284.8 eV), and electrostatic charging is compensated using an Ar + flood gun (see Supporting Information for details). At 0 hrs of ambient exposure (black spectrum in Fig. 2A), the exfoliated BP exhibits a single spin-orbit split doublet at ~130 eV, consistent with previous XPS measurements on BP bulk crystals. 27, 28 Note that these spectra do not match those for red phosphorus (~129.8 eV), white phosphorus, or amorphous P-H. 27 A broad, s photoelectronSi satellite from the substrate 300 nm SiO2 appears at ~126.5 eV. After 13 hrs of ambient exposure (maroon spectrum), the full-width at half-maximum (FWHM) for the BP increases, characteristic of some loss of long range order. After 1, 2, and 3 days in ambient (green, navy, and gray spectra, respectively), an additional doublet appears at ~134 eV. This feature is best assigned to phosphate species, 9, 29 although many oxidized phosphorus compounds exhibit peaks near ~134-135 eV. 30, 31 The la...
Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS) in a scalable fabrication process. The two-dimensional MoS memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could enable complex neuromorphic learning and the study of the physics of defect kinetics in two-dimensional materials.
In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the 2 basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.Deep Jariwala is currently working as a graduate student under supervision of Prof. Mark
Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO₂, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS₂ devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ∼10(3) and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS₂ enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.