Aim Cerebral palsy (CP) is frequently linked to white matter injury in children born preterm. Diffusion tensor imaging (DTI) is a powerful technique providing precise identification of white matter microstructure. We investigated the relationship between DTI‐observed thalamocortical (posterior thalamic radiation) injury, motor (corticospinal tract) injury, and sensorimotor function.
Method Twenty‐eight children born preterm (16 males, 12 females; mean age 5y 10mo, SD 2y 6mo, range 16mo–13y; mean gestational age at birth 28wks, SD 2.7wks, range 23–34wks) were included in this case–control study. Twenty‐one children had spastic diplegia, four had spastic quadriplegia, two had hemiplegia, and one had ataxic/hypotonic CP; 15 of the participants walked independently. Normative comparison data were obtained from 35 healthy age‐matched children born at term (19 males, 16 females; mean age 5y 9mo, SD 4y 4mo, range 15mo–15y). Two‐dimensional DTI color maps were created to evaluate 26 central white matter tracts, which were graded by a neuroradiologist masked to clinical status. Quantitative measures of touch, proprioception, strength (dynamometer), and spasticity (modified Ashworth scale) were obtained from a subset of participants.
Results All 28 participants with CP had periventricular white‐matter injury on magnetic resonance imaging. Using DTI color maps, there was more severe injury in the posterior thalamic radiation pathways than in the descending corticospinal tracts. Posterior thalamic radiation injury correlated with reduced contralateral touch threshold, proprioception, and motor severity, whereas corticospinal tract injury did not correlate with motor or sensory outcome measures.
Interpretation These findings extend previous research demonstrating that CP in preterm children reflects disruption of thalamocortical connections as well as descending corticospinal pathways.
BACKGROUND AND PURPOSE:Conventional MR imaging shows evidence of brain injury and/or maldevelopment in 70%-90% of children with cerebral palsy (CP), though its capability to identify specific white matter tract injury is limited. The great variability of white matter lesions in CP already demonstrated by postmortem studies is thought to be one of the reasons why response to treatment is so variable. Our hypothesis is that diffusion tensor imaging (DTI) is a suitable technique to provide in vivo characterization of specific white matter tract lesions in children with CP associated with periventricular leukomalacia (PVL).
EBM2BACKGROUND AND PURPOSE: Language impairments are observed in a subset of individuals with ASD. To examine microstructural brain white matter features associated with language ability in ASD, we measured the DTI parameters of language-related white matter tracts (SLF) as well as nonlanguage-related white matter tracts (CST) in children with ASD/ϩLI and ASD/ϪLI) and in TD.
ObjectiveTo compare the prevalence of an incomplete circle of Willis in patients with migraine with aura, migraine without aura, and control subjects, and correlate circle of Willis variations with alterations in cerebral perfusion.MethodsMigraine with aura, migraine without aura, and control subjects were prospectively enrolled in a 1∶1∶1 ratio. Magnetic resonance angiography was performed to examine circle of Willis anatomy and arterial spin labeled perfusion magnetic resonance imaging to measure cerebral blood flow. A standardized template rating system was used to categorize circle of Willis variants. The primary pre-specified outcome measure was the frequency of an incomplete circle of Willis. The association between circle of Willis variations and cerebral blood flow was also analyzed.Results170 subjects were enrolled (56 migraine with aura, 61 migraine without aura, 53 controls). An incomplete circle of Willis was significantly more common in the migraine with aura compared to control group (73% vs. 51%, p = 0.02), with a similar trend for the migraine without aura group (67% vs. 51%, p = 0.08). Using a quantitative score of the burden of circle of Willis variants, migraine with aura subjects had a higher burden of variants than controls (p = 0.02). Compared to those with a complete circle, subjects with an incomplete circle had greater asymmetry in hemispheric cerebral blood flow (p = 0.05). Specific posterior cerebral artery variants were associated with greater asymmetries of blood flow in the posterior cerebral artery territory.ConclusionsAn incomplete circle of Willis is more common in migraine with aura subjects than controls, and is associated with alterations in cerebral blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.