ADHD-I shares neuropsychological deficits with ADHD-C in the domain of output speed; on most domains the subtypes did not differ. Neuropsychological distinctions between these ADHD subtypes may be few, depending on which domain of executive functioning is assessed, and these distinctions differ by gender. In the case of boys, the two subtypes may be distinguished by the specificity of motor inhibition deficits to ADHD-C.
Motivated by auditory and speech deficits in autism spectrum disorders (ASD), the frequency dependence of superior temporal gyrus (STG) 50 msec (M50) and 100 msec (M100) neuromagnetic auditory evoked field responses in children with ASD and typically developing controls were evaluated. Whole-cortex magnetoencephalography (MEG) was obtained from 17 typically developing children and 25 children with ASD. Subjects were presented tones with frequencies of 200, 300, 500, and 1,000 Hz, and left and right STG M50 and M100 STG activity was examined. No M50 latency or amplitude Group differences were observed. In the right hemisphere, a Group × Frequency ANOVA on M100 latency produced a main effect for Group (P 5 0.01), with an average M100 latency delay of 11 msec in children with ASD. In addition, only in the control group was the expected association of earlier M100 latencies in older than younger children observed. Group latency differences remained significant when hierarchical regression analyses partialed out M100 variance associated with age, IQ, and language ability (all P-values < 0.05). Examining the right-hemisphere 500 Hz condition (where the largest latency differences were observed), a sensitivity of 75%, a specificity of 81%, and a positive predictive value (PPV) of 86% was obtained at a threshold of 116 msec. The M100 latency delay indicates disruption of encoding simple sensory information. Given similar findings in language impaired and nonlanguage impaired ASD subjects, a right-hemisphere M100 latency delay appears to be an electrophysiological endophenotype for autism.
1H-magnetic resonance spectroscopy (1H-MRS) and spectral editing methods, such as MEGA-PRESS, allow researchers to investigate metabolite and neurotransmitter concentrations in-vivo. Here we address the utilization of 1H-MRS for the investigation of GABA concentrations in the ASD brain, in three locations; motor, visual and auditory areas. An initial repeatability study (5 subjects, 5 repeated measures separated by ~ 5 days on average) indicated no significant effect of reference metabolite choice on GABA quantitation (p > 0.6). Coefficients of variation for GABA+/NAA, GABA+/Cr and GABA+/Glx were all of the order of 9–11%. Based on these findings, we investigated creatine-normalized GABA+ ratios (GABA+/Cr) in a group of (n=17) children with autism spectrum disorder (ASD) and (n=17) typically developing children (TD) for Motor, Auditory and Visual regions of interest (ROIs). Linear regression analysis of grey matter (GM) volume changes (known to occur with development) revealed a significant decrease of GM volume with Age for Motor (F(1,30)=17.92; p<0.001) and Visual F(1,16)=14.41; p<0.005 but not the Auditory ROI(p=0.55). Inspection of GABA+/Cr changes with Age revealed a marginally significant change for the Motor ROI only (F(1,30)=4.11; p=0.054). Subsequent analyses was thus conducted for each ROI separately using Age and GM volume as covariates. No group differences in GABA+/Cr were observed for the Visual ROI between TD vs. ASD children. However, the Motor and Auditory ROI showed significantly reduced GABA+/Cr in ASD (Motor p<0.05; Auditory p<0.01). The mean deficiency in GABA+/Cr from the Motor ROI was approximately 11% and Auditory ROI was approximately 22%. Our novel findings support the model of regional differences in GABA+/Cr in the ASD brain, primarily in Auditory and to a lesser extent Motor but not Visual areas.
Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier Transform was applied and oscillatory activity examined from 1 to 120 Hz at 15 regional sources. Associations between oscillatory anomalies and symptom severity were probed. Children with ASD exhibited regionally specific elevations in delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and high frequency (20–120 Hz) power, supporting an imbalance of neural excitation/inhibition as a neurobiological feature of ASD. Increased temporal and parietal alpha power was associated with greater symptom severity and thus is of particular interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.