Elevated levels of SNCA have been implicated in the pathogenesis of Parkinson's disease (PD), while normal physiological levels of SNCA are needed to maintain neuronal function. We ought to develop new therapeutic strategies targeting the regulation of SNCA expression. DNA methylation at SNCA intron 1 regulates SNCA transcription, and PD brains showed differential methylation levels compared to controls. Thus, DNA methylation at SNCA intron 1 is an attractive target for fine-tuned downregulation of SNCA levels. Here we developed a system, comprising an all-in-one lentiviral vector, for targeted DNA methylation editing within intron 1. The system is based on CRISPR-deactivated Cas9 (dCas9) fused with the catalytic domain of DNA-methyltransferase 3A (DNMT3A). Applying the system to human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons from a PD patient with the SNCA triplication resulted in fine downregulation of SNCA mRNA and protein mediated by targeted DNA methylation at intron 1. Furthermore, the reduction in SNCA levels by the guide RNA (gRNA)-dCas9-DMNT3A system rescued disease-related cellular phenotype characteristics of the SNCA triplication hiPSC-derived dopaminergic neurons, e.g., mitochondrial ROS production and cellular viability. We established that DNA hypermethylation at SNCA intron 1 allows an effective and sufficient tight downregulation of SNCA expression levels, suggesting the potential of this target sequence combined with the CRISPR-dCas9 technology as a novel epigenetic-based therapeutic approach for PD.
Objective We previously found in our embryonic studies that proper regulation of the chemokine CCL12 through its sole receptor CCR2, is critical for joint and growth plate development. In the present study, we examined the role of CCR2 in injury-induced-osteoarthritis (OA). Method We used a murine model of injury-induced-OA (destabilization of medial meniscus, DMM), and systemically blocked CCR2 using a specific antagonist (RS504393) at different times during disease progression. We examined joint degeneration by assessing cartilage (cartilage loss, chondrocyte hypertrophy, MMP-13 expression) and bone lesions (bone sclerosis, osteophytes formation) with or without the CCR2 antagonist. We also performed pain behavioral studies by assessing the weight distribution between the normal and arthritic hind paws using the IITS incapacitance meter. Results Testing early vs. delayed administration of the CCR2 antagonist demonstrated differential effects on joint damage. We found that OA changes in articular cartilage and bone were ameliorated by pharmacological CCR2 blockade, if given early in OA development: specifically, pharmacological targeting of CCR2 during the first 4 weeks following injury, reduced OA cartilage and bone damage, with less effectiveness with later treatments. Importantly, our pain-related behavioral studies showed that blockade of CCR2 signaling during early, 1–4wks post-surgery or moderate, 4–8wks post-surgery, OA was sufficient to decrease pain measures, with sustained improvement at later stages, after treatment was stopped. Conclusions Our data highlight the potential efficacy of antagonizing CCR2 at early stages to slow the progression of post-injury OA and, in addition, improve pain symptoms.
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic form of Parkinson's Diseases (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA) and other synucleinopathies, and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA downregulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glia lineages involved in synucleinopathies representing an attractive strategy to elucidate – common and specific – SNCA -genetic variants, -regulatory mechanisms, and -vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming knowledge will support the development of precision medicine for synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.