Hydrophobic vitamins are transported in human plasma and extravascular fluids by carrier proteins. No specific protein has been described so far for vitamin E, which plays a crucial role in protecting against oxidative damage and disease. We report here the purification of a 75-kDa glycoprotein with vitamin E-binding properties by stepwise chromatography of lipoprotein-depleted human plasma and monitoring of vitamin E (alpha-tocopherol)-binding activity. Partial sequencing identified this protein as afamin, a previously described member of the albumin gene family with four or five potential N-glycosylation sites. Glycosylation analysis indicated that >90% of the glycans were sialylated biantennary complex structures. The vitamin E-binding properties were confirmed using recombinantly expressed afamin. Qualitative and quantitative analysis of plasma and extravascular fluids revealed an abundant presence of this protein not only in plasma (59.8+/-13.3 microg/mL) but also in extravascular fluids such as follicular (34.4+/-12.7 microg/mL) and cerebrospinal (0.28+/-0.16 microg/mL) fluids, suggesting potential roles for afamin in fertility and neuroprotection. Afamin is partly (13%) bound to plasma lipoproteins. Afamin and vitamin E concentrations significantly correlate in follicular and cerebrospinal fluids but not in plasma. The vitamin E association of afamin in follicular fluid was directly demonstrated by gel filtration chromatography and immunoprecipitation which complements the in vitro findings for purified native and recombinant afamin.
Human plasma afamin, the fourth member of the albumin gene family, is shown to be a specific binding protein for vitamin E. A radio ligand-binding assay followed by Scatchard and Hill analysis are used to show that afamin has a binding affinity for both alpha-tocopherol and gamma-tocopherol, two of the most important forms of vitamin E, in vitro. The binding-dissociation constant was determined to be 18 microM, indicating that afamin plays a role as vitamin E carrier in body fluids such as human plasma and follicular fluid under physiological conditions. Additionally, we demonstrate that afamin has multiple binding sites for both alpha- and gamma-tocopherol. Due to the large binding capacity of afamin for vitamin E, it might take over the role of vitamin E transport in body fluids under conditions where the lipoprotein system is not sufficient for vitamin E transport. To confirm the experimental results, we performed homology modeling and docking calculations on the predicted tertiary structure, which showed coincidence between calculated and in vitro results.
The presence of ASA on sperm or in the serum and follicular fluid was not associated with IVF outcome in the couples with good quality semen characteristic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.