Hydrophobic vitamins are transported in human plasma and extravascular fluids by carrier proteins. No specific protein has been described so far for vitamin E, which plays a crucial role in protecting against oxidative damage and disease. We report here the purification of a 75-kDa glycoprotein with vitamin E-binding properties by stepwise chromatography of lipoprotein-depleted human plasma and monitoring of vitamin E (alpha-tocopherol)-binding activity. Partial sequencing identified this protein as afamin, a previously described member of the albumin gene family with four or five potential N-glycosylation sites. Glycosylation analysis indicated that >90% of the glycans were sialylated biantennary complex structures. The vitamin E-binding properties were confirmed using recombinantly expressed afamin. Qualitative and quantitative analysis of plasma and extravascular fluids revealed an abundant presence of this protein not only in plasma (59.8+/-13.3 microg/mL) but also in extravascular fluids such as follicular (34.4+/-12.7 microg/mL) and cerebrospinal (0.28+/-0.16 microg/mL) fluids, suggesting potential roles for afamin in fertility and neuroprotection. Afamin is partly (13%) bound to plasma lipoproteins. Afamin and vitamin E concentrations significantly correlate in follicular and cerebrospinal fluids but not in plasma. The vitamin E association of afamin in follicular fluid was directly demonstrated by gel filtration chromatography and immunoprecipitation which complements the in vitro findings for purified native and recombinant afamin.
Cell volume alterations are involved in numerous cellular events like epithelial transport, metabolic processes, hormone secretion, cell migration, proliferation and apoptosis. Above all it is a need for every cell to counteract osmotic cell swelling in order to avoid cell damage. The defence against excess cell swelling is accomplished by a reduction of the intracellular osmolarity by release of organic- or inorganic osmolytes from the cell or by synthesis of osmotically less active macromolecules from their specific subunits. De-spite the large amount of experimental data that has accumulated, the intracellular mechanisms underlying the sensing of cell volume perturbations and the activation of volume compensatory processes, commonly summarized as regulatory volume decrease (RVD), are still only partly revealed. Moving into this field opens a complex scenario of molecular rearrangements and interactions involving intracellular messengers such as calcium, phosphoinositides and inositolphosphates as well as phosphoryla-tion/dephosphorylation processes and cytoskeletal reorganization with marked cell type- and tissue specific variations. Even in one and the same cell type significant differences regarding the activated pathways during RVD may be evident. This makes it virtually im-possible to unambigously define common sensing- and sinaling pathways used by differ-ent cells to readjust their celll volume, even if all these pathways converge to the activa-tion of comparatively few sets of effectors serving for osmolyte extrusion, including ion channels and transporters. This review is aimed at providing an insight into the manifold cellular mechanisms and alterations occuring during cell swelling and RVD.
ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.