Since their discovery in 1985, fullerenes have attracted considerable attention. Their unique carbon cage structure provides numerous opportunities for functionalization, giving this nanomaterial great potential for applications in the field of medicine. Analysis of the chemical, physical, and biological properties of fullerenes and their derivatives showed promising results. In this study, functionalized fullerene based nanomaterials were characterized using near infrared spectroscopy, and a novel method - Aquaphotomics. These nanomaterials were then used for engineering a new skin cream formula for their application in cosmetics and medicine. In this paper, results of nanocream effects on the skin (using near infrared spectroscopy and aquaphotomics), and existing results of biocompatibility and cytotoxicity of fullerene base nanomaterials, are presented.
Hydrogen bond has dual property, classical (electrostatic interaction based on Coulomb's law) and quantum (wave function based on Schrödinger equation). Since Planck's constant is one of the main criteria for decision which process is quantum, or how much is close to be quantum, we use electrical and magnetic forces of valence electrons, as point of departure, to develop method for opto-magnetic fingerprint of matter. During the study of different type of matter we observed phenomena from spectral convolution data of digital images which characterize matter from both covalent and non-covalent bonding. Since water is matter that is most abundant with hydrogen bonds, we present results of 18.2 MΩ water investigation on different temperature and under influence of constant and variable magnetic fields by opto-magnetic method. Bearing in mind that Linus Pauling, in his book Nature of the Chemical Bond (Cornel University Press, 1939), for the first time presented the systematic concept of the hydrogen bond to the molecular world and its machinery, this paper is written in honor to him and 70th anniversary of one of the most important scientific paradigm.
Despite that water is one of the most studied materials today its dynamic
properties are still not well understood. Water state in human organism is of
high importance for normal healthy functioning of human body. Different kinds
of water are usually classified according to its present solutes, and
concentrations of these solutes, but though it is known that water molecules
can form clusters around present solutes, classification of waters based on
types of water molecular organization and present clusters is not present in
current literature. In this study we used multivariate analysis for
classification of commercial mineral waters based on their near infrared
spectra (NIR). Further, we applied Aquaphotomics, a new approach for
interpretation of near infrared spectra of water, which gives insight into
organization of water molecules in each of these waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.