Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.
Four halopyridinium salts, 3-chloro- and 3-bromopyridinium chlorides and bromides, have been successfully cocrystallized with two ditopic perfluorinated iodobenzenes, 1,4-diiodotetrafluorobenzene and 1,2-diiodotetrafluorobenzene. These halogen bond donor molecules were chosen because the different positionings of halogen bond donor atoms can lead to different supramolecular architectures. In this work, we present insight into the halogen bond acceptor potential of chloride and bromide ions, as well as the halogen bond donor potential of chlorine and bromine atoms substituted on the pyridinium ring when combined with the expectedly very strong hydrogen bonds between halopyridinium ions and free halogenide anions. A series of eight cocrystals were obtained in which three pairs of isostructural cocrystals were formed. Dominant interactions in the obtained cocrystals were charge-assisted hydrogen bonds between halopyridinium cations and halogenide ions as well as halogen bonds between halogen atoms on the pyridinium ring and halogenide ions.
Low dietary calcium intake and bioavailability may adversely affect bone health. Reducing the size of calcium compounds increases their specific surface area (SSA, expressed as m/g) and may increase calcium dissolution and bioavailability. We investigated the influence of SSA and chemical composition on the bioavailability of calcium and compared in vitro calcium dissolution with in vivo absorption. Calcium dissolution was measured in 0.1 M phosphoric acid, whereas color and pH changes of foods were assessed as indicators for potential sensory performance. Calcium absorption, retention, and fractional retention were measured over a 5-d balance study in growing Sprague-Dawley male rats after 21 d of feeding. Femoral and vertebral bone mineral density (BMD) and extensive tissue histology were assessed at study end. The influence of SSA on calcium bioavailability was assessed by comparing the groups fed pure calcium carbonate (CaCO) with increasing SSAs of 3, 36, and 64 m/g (CaCO_3, CaCO_36 and CaCO_64), whereas chemical composition was assessed by comparing the smallest CaCO_64, a 50:50 wt:wt percent solution mixture of CaCO and hydroxyapatite_94, and pure hydroxyapatite_100. In vivo, fractional calcium retention from hydroxyapatite_100 (mean ± SEM: 54.86% ± 0.95%/5 d) was significantly greater than from CaCO_64 (49.66% ± 1.15%/5 d) ( = 0.044). Increasing SSA of the pure CaCO did not significantly improve calcium retention. Across all 5 groups, there were no significant differences in BMD or tissue calcification by histology. In vitro calcium dissolution did not correlate with SSA or calcium absorption. In selected food matrixes, hydroxyapatite_100 caused less color change and/or smaller pH increase than did the other calcium compounds. Our findings suggest that chemical composition rather than SSA is a predictor of nanostructured calcium bioavailability and that in vitro dissolution of nanostructured calcium does not predict in vivo absorption. Although its phosphorus content may limit use in some populations, nanostructured hydroxyapatite may be a promising calcium compound for food fortification.
):557.11. kongres Hrvatskoga kardiološkog društva s međunarodnim sudjelovanjem 6. kongres Hrvatske udruge kardioloških medicinskih sestara Prošireni sažetak Invazivni i neinvazivni postupci u kardiologijiExtended Abstract Invasive and noninvasive procedures in cardiology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.