Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
Critical Care 2017, 21(Suppl 1):P349 Introduction Imbalance in cellular energetics has been suggested to be an important mechanism for organ failure in sepsis and septic shock. We hypothesized that such energy imbalance would either be caused by metabolic changes leading to decreased energy production or by increased energy consumption. Thus, we set out to investigate if mitochondrial dysfunction or decreased energy consumption alters cellular metabolism in muscle tissue in experimental sepsis. Methods We submitted anesthetized piglets to sepsis (n = 12) or placebo (n = 4) and monitored them for 3 hours. Plasma lactate and markers of organ failure were measured hourly, as was muscle metabolism by microdialysis. Energy consumption was intervened locally by infusing ouabain through one microdialysis catheter to block major energy expenditure of the cells, by inhibiting the major energy consuming enzyme, N+/K + -ATPase. Similarly, energy production was blocked infusing sodium cyanide (NaCN), in a different region, to block the cytochrome oxidase in muscle tissue mitochondria. Results All animals submitted to sepsis fulfilled sepsis criteria as defined in Sepsis-3, whereas no animals in the placebo group did. Muscle glucose decreased during sepsis independently of N+/K + -ATPase or cytochrome oxidase blockade. Muscle lactate did not increase during sepsis in naïve metabolism. However, during cytochrome oxidase blockade, there was an increase in muscle lactate that was further accentuated during sepsis. Muscle pyruvate did not decrease during sepsis in naïve metabolism. During cytochrome oxidase blockade, there was a decrease in muscle pyruvate, independently of sepsis. Lactate to pyruvate ratio increased during sepsis and was further accentuated during cytochrome oxidase blockade. Muscle glycerol increased during sepsis and decreased slightly without sepsis regardless of N+/K + -ATPase or cytochrome oxidase blocking. There were no significant changes in muscle glutamate or urea during sepsis in absence/presence of N+/K + -ATPase or cytochrome oxidase blockade. ConclusionsThese results indicate increased metabolism of energy substrates in muscle tissue in experimental sepsis. Our results do not indicate presence of energy depletion or mitochondrial dysfunction in muscle and should similar physiologic situation be present in other tissues, other mechanisms of organ failure must be considered. , and long-term follow up has shown increased fracture risk [2]. It is unclear if these changes are a consequence of acute critical illness, or reduced activity afterwards. Bone health assessment during critical illness is challenging, and direct bone strength measurement is not possible. We used a rodent sepsis model to test the hypothesis that critical illness causes early reduction in bone strength and changes in bone architecture. Methods 20 Sprague-Dawley rats (350 ± 15.8g) were anesthetised and randomised to receive cecal ligation and puncture (CLP) (50% cecum length, 18G needle single pass through anterior and posterior wa...
In a rodent sepsis model, trabecular bone strength is functionally reduced within 24 hours and is associated with a reduction in collagen and mineral elastic modulus. This is likely to be the result of altered biomechanical properties, rather than increased bone mineral turnover. These data offer both mechanistic insights and may potentially guide development of therapeutic interventions.
Dialysate 0 ml.min -1 2ml.min -1 4 ml.min -1 6 ml.min -1 8 ml.min -1 10 ml.min -1 20 ml.min -1 * Target Partial Pressure of carbon dioxide (mm Hg). † PCO 2 change is significantly different from Prismasol TM control (p<0.05). ¶ PCO 2 change is significantly different from Bicarb16 dailysate.
Sepsis-related bone diseases are rarely reported although many ICU patients are diagnosed with bone damage after prolonged immobility. In this work, cortical bone of femurs from Sprague−Dawley rats under mild sepsis condition are investigated by using Scanning Probe Microscopy (SPM) to study the influence of sepsis on the changes of structure, chemistry, and elastic modulus of bone microconstituents, i.e., collagen fibers and mineral. The results show that there are significant changes on elastic modulus, shape, and chemical composition of collagen fibers 24 h after the sepsis insult, but all of the changes are recovered to almost normal 96 h after the insult. These phenomena are found to be associated with demineralization of the collagen fiber. For the mineral constituents in bone, the elastic modulus decreases significantly 96 h after the insult, showing slower responses compared with those in the collagen fibers. Particle analysis reveals that the size of the mineral particles decreases continuously and significantly with the time after the sepsis insulting. This work reveals the responding processes of bone microconstituents to sepsis in rat mode and, hence, can provide an insight into the pathogenesis of sepsis related human bone damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.