Targeted protein degradation has generated excitement in chemical biology and drug discovery throughout academia and industry. By hijacking the machinery responsible for protein degradation via the ubiquitin proteasome system (UPS), various cellular targets have been selectively degraded. However, since the tools used, often termed PROteolysis TArgeting Chimeras (PROTACs), hijack the intracellular quality control machinery, this technology can only access targets within the cell. Extracellular targets such as growth factors, cytokines, and chemokines bind to cell surface receptors, often initiating aberrant signaling in multiple diseases such as cancer and inflammation. However, efforts to develop small molecule inhibitors for these extracellular target proteins have been challenging. Herein, we developed a proof-of-concept approach to evaluate if extracellular proteins can be internalized and degraded via the receptor-mediated endolysosomal pathway. Using a heterodimeric molecule, termed “ENDosome TArgeting Chimera” (ENDTAC), internalization and degradation of an extracellular recombinant eGFP-HT7 fusion protein was achieved by hijacking the decoy GPCR receptor, CXCR7. This proof-of-concept study suggests that using ENDTACs to co-opt the endosomal–lysosomal degradation pathway, in contrast to PROTACs using the UPS, may provide an avenue for degrading extracellular targets such as cytokines. Overall, the technology described herein provides a novel expansion to the field of targeted protein degradation.
Targeting proteins’ enzymatic functions with small molecule inhibitors, as well as functions of receptor proteins with small-molecule agonists and antagonists, were the major forms of small-molecule drug development. These small-molecule modulators are based on a conventional occupancy-driven pharmacological approach. For proteome space traditionally considered undruggable by small-molecule modulators, such as enzymes with scaffolding functions, transcription factors, and proteins that lack well-defined binding pockets for small molecules, targeted protein degraders offer the opportunity to drug the proteome with an event-driven pharmacological approach. A degrader molecule, either PROTAC or molecular glue, brings the protein of interest (POI) and E3 ubiquitin ligase in close proximity and engages the ubiquitin-proteasome system (UPS), the cellular waste disposal system for the degradation of the POI. For the development of targeted protein degraders to meet therapeutic needs, several aspects will be considered, namely, the selective degradation of disease-causing proteins, the oral bioavailability of degraders beyond Lipinski’s rule of five (bRo5) scope, demands of new E3 ubiquitin ligases and molecular glue degraders, and drug resistance of the new drug modality. This review will illustrate several under-discussed key considerations in targeted protein degradation drug discovery and development: 1) the contributing factors for the selectivity of PROTAC molecules and the design of PROTACs to selectively degrade synergistic pathological proteins; 2) assay development in combination with a multi-omics approach for the identification of new E3 ligases and their corresponding ligands, as well as molecular glue degraders; 3) a molecular design to improve the oral bioavailability of bRo5 PROTACs, and 4) drug resistance of degraders.
Metrics & MoreArticle RecommendationsT he authors retract this article after further experiments resynthesizing compounds ENDTAC-1 and ENDTACneg were unable to reproduce the presented findings on small molecule-directed targeting of extracellular proteins for degradation via the lysosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.