Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3).
Estimation of glomerular filtration rate (eGFR) is essential to assess kidney function. Iodine-containing contrast agents detection by HPLC has been proposed as a safe alternative for inulin or radioactive compounds. However, HPLC is a time-consuming and labor-intensive method. The aim of this study was to develop an assay for iohexol and iothalamate using capillary electrophoresis. Iohexol and iothalamate were directly analyzed by CE in serum and urine, using photometric detection (246 nm). Serum peak height was proportional to iohexol and iothalamate concentrations. Detection limits for iohexol and iothalamate were 10 and 5 mg/L. Limits of quantification were 13.0 and 15.0 mg/L. Within-run CVs were 4.9 and 6.5%; between-run CVs 3.1-9.9% and 3.8-13.7%. A good correlation was observed between CE and HPLC: y = 1.1703x + 5.017 (iohexol) and y = 0.7807x + 11.01 (iothalamate; (y = concentration obtained by CE [mg/L], x = concentration obtained by HPLC [mg/L]). In addition, CE allowed to determine urinary iohexol concentration. Although the detection limit for CE was higher than for HPLC, CE can still be used for eGFR determination. Advantages of this high-throughput method are the absence of sample pretreatment and a minimal sample volume requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.