Past studies have shown that aggressive children exhibit rigid (rather than flexible) parent-child interactions; these rigid repertoires may provide the context through which children fail to acquire emotion-regulation skills. Difficulties in regulating emotion are associated with minimal activity in dorsal systems in the cerebral cortex, for example, the anterior cingulate cortex. The current study aimed to integrate parent-child and neurocognitive indices of emotion regulation and examine their associations for the first time. Sixty children (8-12 years old) referred for treatment for aggression underwent two assessments. Brain processes related to emotion regulation were assessed using dense-array EEG with a computerized go/no-go task. The N2 amplitudes thought to tap inhibitory control were recorded, and a source analysis was conducted. In the second assessment, parents and children were videotaped while trying to solve a conflict topic. State space grids were used to derive two dynamic flexibility parameters from the coded videotapes: (a) the number of transitions between emotional states and (b) the dispersion of emotional states, based on proportional durations in each state. The regression results showed that flexibility measures were not related to N2 amplitudes. However, flexibility measures were significantly associated with the ratio of dorsal to ventral source activation: for transitions, ΔR 2 = .27, F (1, 34) = 13.13, p = .001; for dispersion, ΔR 2 = .29, F (1, 35) = 14.76, p < .001. Thus, in support of our main hypothesis, greater dyadic flexibility was associated with a higher ratio of dorsomedial to ventral activation, suggesting that children with more flexible parent-child interactions are able to recruit relatively more dorsomedial activity in challenging situations.
The rising prevalence of type 2 diabetes (T2DM) and hypertension in older adults, and the deleterious effect of these conditions on cerebrovascular and brain health, is creating a growing discrepancy between the “typical” cognitive aging trajectory and a “healthy” cognitive aging trajectory. These changing health demographics make T2DM and hypertension important topics of study in their own right, and warrant attention from the perspective of cognitive aging neuroimaging research. Specifically, interpretation of individual or group differences in blood oxygenation level dependent magnetic resonance imaging (BOLD MRI) or positron emission tomography (PET H2O15) signals as reflective of differences in neural activation underlying a cognitive operation of interest requires assumptions of intact vascular health amongst the study participants. Without adequate screening, inclusion of individuals with T2DM or hypertension in “healthy” samples may introduce unwanted variability and bias to brain and/or cognitive measures, and increase potential for error. We conducted a systematic review of the cognitive aging neuroimaging literature to document the extent to which researchers account for these conditions. Of the 232 studies selected for review, few explicitly excluded individuals with T2DM (9%) or hypertension (13%). A large portion had exclusion criteria that made it difficult to determine whether T2DM or hypertension were excluded (44 and 37%), and many did not mention any selection criteria related to T2DM or hypertension (34 and 22%). Of all the surveyed studies, only 29% acknowledged or addressed the potential influence of intersubject vascular variability on the measured BOLD or PET signals. To reinforce the notion that individuals with T2DM and hypertension should not be overlooked as a potential source of bias, we also provide an overview of metabolic and vascular changes associated with T2DM and hypertension, as they relate to cerebrovascular and brain health.
Background Total physical activity is positively associated with brain volume and cognition in older adults. While we have ample evidence that recreational physical activity influences brain health, the contributions of other daily activities are less understood. In particular, the associations between household physical activity and brain health in older adults is underexplored. The purpose of this study was to identify associations between household physical activity, brain volume, and cognition in a sample of cognitively unimpaired older adults. Methods We report data from 66 cognitively unimpaired older adults (71 ± 4 years) who participated in a health evaluation, cognitive assessment, and structural brain imaging. Physical activity was assessed using the Phone-FITT questionnaire and separated into household and recreational physical activity. We quantified whole brain volume, gray matter volume, and white matter volume, and assessed cognitive performance in four domains: memory, working memory/attention, processing speed, and executive function. Associations between physical activity, brain volume, and cognition were investigated in an omnibus approach using two multivariate analysis of variance (MANOVA) models. The first model assessed the associations between physical activity and brain volume adjusting for age, sex, Framingham Risk score (FRS) and intracranial volume. The second model assessed the associations between physical activity and overall cognitive performance adjusting for age, sex, FRS and education. Post hoc regression analyses were conducted to investigate significant MANOVA results. We also conducted further regression analyses to investigate associations with hippocampal and frontal lobe volume. Results Household, but not recreational, physical activity was positively associated with brain volume measurements (F = 3.07, p = .035), specifically gray matter volume (t = 2.51, p = .015). Further exploratory analyses identified that household physical activity was associated with hippocampal (p = .015) and frontal lobe (p = .010) volume. No significant relationships were observed between household or recreational physical activity and cognition. Conclusion Time spent engaging in household physical activity was positively associated with brain volume, specifically gray matter volume, in older adults. Highlighting the benefits associated with household chores may motivate older adults to be more active by providing a more attainable, low risk form of physical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.