Background Total physical activity is positively associated with brain volume and cognition in older adults. While we have ample evidence that recreational physical activity influences brain health, the contributions of other daily activities are less understood. In particular, the associations between household physical activity and brain health in older adults is underexplored. The purpose of this study was to identify associations between household physical activity, brain volume, and cognition in a sample of cognitively unimpaired older adults. Methods We report data from 66 cognitively unimpaired older adults (71 ± 4 years) who participated in a health evaluation, cognitive assessment, and structural brain imaging. Physical activity was assessed using the Phone-FITT questionnaire and separated into household and recreational physical activity. We quantified whole brain volume, gray matter volume, and white matter volume, and assessed cognitive performance in four domains: memory, working memory/attention, processing speed, and executive function. Associations between physical activity, brain volume, and cognition were investigated in an omnibus approach using two multivariate analysis of variance (MANOVA) models. The first model assessed the associations between physical activity and brain volume adjusting for age, sex, Framingham Risk score (FRS) and intracranial volume. The second model assessed the associations between physical activity and overall cognitive performance adjusting for age, sex, FRS and education. Post hoc regression analyses were conducted to investigate significant MANOVA results. We also conducted further regression analyses to investigate associations with hippocampal and frontal lobe volume. Results Household, but not recreational, physical activity was positively associated with brain volume measurements (F = 3.07, p = .035), specifically gray matter volume (t = 2.51, p = .015). Further exploratory analyses identified that household physical activity was associated with hippocampal (p = .015) and frontal lobe (p = .010) volume. No significant relationships were observed between household or recreational physical activity and cognition. Conclusion Time spent engaging in household physical activity was positively associated with brain volume, specifically gray matter volume, in older adults. Highlighting the benefits associated with household chores may motivate older adults to be more active by providing a more attainable, low risk form of physical activity.
Interest in the gut-brain axis and its implications for neurodegenerative diseases, such as Alzheimer’s Disease and related dementias, is growing. Microbial imbalances in the gastrointestinal tract, which are associated with impaired cognition, may represent a therapeutic target for lowering dementia risk. Multicomponent lifestyle interventions are a promising dementia risk reduction strategy and most often include diet and exercise, behaviours that are also known to modulate the gut microbiome. A better understanding of the role of the gut microbiome in diet and exercise effects on cognition may help to optimize these lifestyle interventions. The purpose of this review is to summarize findings from diet and exercise interventions that have investigated cognitive changes via effects on the microbiome. We aim to discuss the underlying mechanisms, highlight current gaps in the field, and provide new research directions. There is evidence mainly from rodent studies supporting the notion that microbiota changes mediate the effects of diet and exercise on cognition, with potential mechanisms including end-product metabolites and regulation of local and systemic inflammation. The field lacks whole diet and exercise interventions, especially those involving human participants. It is further limited by heterogeneous rodent models, outcome assessments, and absence of proper mediation analyses. Trials including older adults with dementia risk factors, factorial designs of diet and exercise, and pre and post measures of microbiota, end-product metabolites, and inflammation would help to elucidate and potentially leverage the role of the microbiome in lowering dementia risk through lifestyle modification.
Background Healthy diet and exercise are associated with reduced risk of dementia in older adults. The impact of diet and exercise interventions on brain health is less consistent, especially with dietary interventions which rely on varying approaches. Our objective was to evaluate the feasibility and preliminary efficacy of a 6-month intervention combining exercise with a novel dietary counseling approach to improve hippocampal volume among older adults at-risk for dementia. Methods Participants with vascular risk factors and subjective cognitive decline or early mild cognitive impairment were cluster randomized in groups of 3–4 to the diet intervention (DIET) or control education (ED) group. All participants engaged in 1 h of supervised exercise per week and additional exercise at home. DIET involved 1 h per week of group-based dietary counseling comprising education, goal setting, and strategy training. ED involved 1 h per week of group-based brain health education classes. Our primary outcome was change in hippocampal volume from baseline to 6 months. Secondary outcomes included changes in cognitive function, blood biomarkers, diet, and fitness. Recruitment challenges and early discontinuation of the trial due to COVID-19 necessitated a revised focus on feasibility and preliminary efficacy. Results Of 190 older adults contacted, 14 (7%) were eligible and enrolled, constituting 21% of our recruitment target. All participants completed the intervention and attended 90% of exercise and DIET/ED sessions on average. All 6-month assessments prior to COVID-19 were completed but disruptions to in-person testing resulted in incomplete data collection. No serious adverse events occurred and all participants expressed positive feedback about the study. Preliminary findings did not identify any significant changes in hippocampal volume; however, substantial improvements in diet and HbA1c were observed with DIET compared to ED (d = 1.75 and 1.07, respectively). Conclusions High adherence and retention rates were observed among participants and preliminary findings illustrate improvements in diet quality and HbA1c. These results indicate that a larger trial is feasible if difficulties surrounding recruitment can be mitigated. Trial registration ClinicalTrials.gov identifier: NCT03056508.
Background: Gait deficits are associated with brain atrophy and white matter hyperintensities (WMH)-both markers of underlying cerebral small vessel disease (SVD). Given reduced subcortical cerebral blood flow (CBF) is prevalent in SVD, we tested the hypothesis that regional CBF is positively associated with gait performance among older adults. Methods: Thirty-two older adults (55-80 years) with at least one vascular risk factor were recruited. We assessed gait during 2 consecutive walking sequences using a GAITRite system: (1) at a self-selected pace, and (2) while performing a serial subtraction dual-task challenge. We quantified CBF using pseudo-continuous arterial spin labeling MRI within 4 regions of interest: putamen, pallidum, thalamus, and hippocampus. We investigated associations between gait characteristics and overall CBF adjusting for age, sex, and height in an omnibus approach using multivariate analysis of variance, followed by regression analysis with each individual region. We also conducted further regression analyses to investigate associations between gait characteristics and frontal lobe CBF. Sensitivity analyses examined how the observed associations were modified by WMH, executive function, and depressive symptoms. A change of 10% in the model's adjusted r 2 and effect size was considered as a threshold for confounding. Results: Overall subcortical CBF was not associated with self-paced gait. When examining individual ROI, gait velocity was directly related to thalamic CBF (p = 0.026), and across all gait variables the largest effect sizes were observed in relation to thalamic CBF. In the dual-task condition, gait variables were not related to CBF in either the omnibus approach or individual multiple regressions. Furthermore, no significant associations were observed between frontal CBF and gait variables in either the selfpaced or dual-task condition. Sensitivity analyses which were restricted to examine the association of velocity and thalamic CBF identified a cofounding effect of depressive symptoms which increased the effect size of the CBF-gait association by 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.