Delivery of molecules into intracellular compartments is one of the fundamental requirements in molecular biology. However, the possibility of delivering a precise number of nano-objects with single-particle resolution is still an open challenge. Here we present an electrophoretic platform based on 3D hollow nanoelectrodes to enable delivery of single nanoparticles into single selected cells and monitoring of the single-particle delivery by surface-enhanced Raman scattering (SERS). The gold-coated hollow nanoelectrode capable of confinement and enhancement of electromagnetic fields upon laser illumination can distinguish the SERS signals of a single nanoparticle flowing through the nanoelectrode. Tight wrapping of cell membranes around the nanoelectrodes allows effective membrane electroporation such that single gold nanorods are delivered on demand into a living cell by electrophoresis. The capability of the 3D hollow nanoelectrodes to porate cells and reveal single emitters from the background in continuous flow is promising for the analysis of both intracellular delivery and sampling.
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.
The electrophysiological recording of action potentials in human cells is a long‐sought objective due to its pivotal importance in many disciplines. Among the developed techniques, invasiveness remains a common issue, causing cytotoxicity or altering unpredictably cell physiological response. In this work, a new approach for recording intracellular signals of outstanding quality and with noninvasiveness is introduced. By taking profit of the concept of mirror charge in classical electrodynamics, the new proposed device transduces cell ionic currents into mirror charges in a microfluidic chamber, thus realizing a virtual mirror cell. By monitoring mirror charge dynamics, it is possible to effectively record the action potentials fired by the cells. Since there is no need for accessing or interacting with the cells, the method is intrinsically noninvasive. In addition, being based on optical recording, it shows high spatial resolution and high parallelization. As shown through a set of experiments, the presented methodology is an ideal candidate for the next generation devices for the reliable assessment of cardiotoxicity on human‐derived cardiomyocytes. More generally, it paves the way toward a new family of in vitro biodevices that will lay a new milestone in the field of electrophysiology.
Neuropathological models and neurological disease progression and treatments have always been of great interest in biomedical research because of their impact on society. The application of in vitro microfluidic devices to neuroscience-related disciplines provided several advancements in therapeutics or neuronal modeling thanks to the ability to control the cellular microenvironment at spatiotemporal level. Recently, the introduction of three-dimensional nanostructures has allowed high performance in both in vitro recording of electrogenic cells and drug delivery using minimally invasive devices. Independently, both delivery and recording have let to pioneering solutions in neurobiology. However, their combination on a single chip would provide further fundamental improvements in drug screening systems and would offer comprehensive insights into pathologies and diseases progression. Therefore, it is crucial to develop platforms able to monitor progressive changes in electrophysiological behavior in the electrogenic cellular network, induced by spatially localized injection of biochemical agents. In this work, we show the application of a microfluidic multielectrode array (MEA) platform to record spontaneous and chemically stimulated activity in primary neuronal networks. By means of spatially localized caffeine injection via microfluidic nanochannels, the device demonstrated its capability of combined localized drug delivery and cell signaling recording. The platform could detect activity of the neural network at multiple sites while delivering molecules into just a few selected cells, thereby examining the effect of biochemical agents on the desired portion of cell culture.
Plasmonic nanostructures capable of converting light to heat have found wide applications, thus giving rise to the field of thermoplasmonics. Among them, the use of gold-based plasmonic structures in near-infrared (NIR) spectral regions has catalyzed substantial research efforts due to the potential impact in clinical therapy applications. However, the photon scattering effect scaling with the square of the nanoparticle volume leads to high scattering and then low absorption efficiency. This limit has hindered the exploitation of gold nanoparticles, especially in NIR II regions above 1000 nm. Here, we make a step forward for overcoming this limitation by introducing hyperbolic metamaterial nanoparticles that are made of multi-layered gold/dielectric nanodisks and exhibit >70% absorption efficiency in the NIR II and III regions. Their high light-to-heat conversion is demonstrated by a much larger temperature increase than that of gold nanodisks with the same amount of gold. Efficient in vitro hyperthermia of living cells with negligible cytotoxicity shows the potential of our platform for versatile bio-medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.