Naturally occurring ACE (angiotensin converting enzyme) inhibitory peptides have a potential as antihypertensive components in functional foods or nutraceuticals. These peptides have been discovered in various food sources from plant and animal protein origin. In this paper an overview is presented of the ACE inhibitory peptides obtained by enzymatic hydrolysis of muscle protein of meat, fish, and invertebrates. Some of these peptides do not only show in vitro ACE inhibitory activity but also in vivo antihypertensive activity in spontaneously hypertensive rats. To focus on new sources of ACE inhibitory peptides, more specifically insects and other invertebrates, we compared the vertebrate and invertebrate musculature and analyzed phylogenetic relationships.
In this paper, ACE inhibitory activity in insect protein hydrolyzed by various enzymes (gastrointestinal proteases, alcalase, and thermolysin) is reported for the first time. Four insects of different insect orders were tested: Spodoptera littoralis (Lepidoptera), Bombyx mori (Lepidoptera), Schistocerca gregaria (Orthoptera), and Bombus terrestris (Hymenoptera). ACE inhibitory activity was measured by two different methods: a spectrophotometric method using FAPGG (2-furanacryloyl-phenylalanyl-glycyl-glycine) as substrate, and an HPLC method using dansyltriglycine (DTG) as substrate. Hydrolysis of the insect protein resulted in an increased ACE inhibitory activity. Overall, the highest ACE inhibitory activity was obtained after gastrointestinal digestion. These results suggest a role for insect protein as antihypertensive component in functional foods and nutraceuticals. Furthermore, the ACE inhibitory activity differed according to the method used. As a consequence, there is a need to standardize methodologies to evaluate ACE inhibitory activity.
In this project we report on the angiotensin I-converting enzyme (ACE)-inhibitory activity of a bovine gelatin hydrolysate (Bh2) that was submitted to further hydrolysis by different enzymes. The thermolysin hydrolysate (Bh2t) showed the highest in vitro ACE inhibitory activity, and interestingly a marked in vivo blood pressure-lowering effect was demonstrated in spontaneously hypertensive rats (SHR). In contrast, Bh2 showed no effect in SHR, confirming the need for the extra thermolysin hydrolysis. Hence, an angiotensin I-evoked contractile response in isolated rat aortic rings was inhibited by Bh2t, but not by Bh2, suggesting ACE inhibition as the underlying antihypertensive mechanism for Bh2t. Using mass spectrometry, seven small peptides, AG, AGP, VGP, PY, QY, DY and IY or LY or HO-PY were identified in Bh2t. As these peptides showed ACE inhibitory activity and were more prominent in Bh2t than in Bh2, the current data provide evidence that these contribute to the antihypertensive effect of Bh2t.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.