Summary To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here we report the surprising observation that mice generate T cell independent and largely Toll-like receptor (TLR) dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.
At least two members of the Toll-like receptor (TLR) family, TLR7 and TLR9, can recognize self-RNA or DNA, respectively. Despite the structural and functional similarities between these receptors, their contribution to autoimmune diseases such as systemic lupus erythematosus (SLE) can be quite different. For example, TLR7 and TLR9 have opposing effects in mouse models of SLE; disease is exacerbated in TLR9-deficient mice but attenuated in TLR7-deficient mice 1 . However, mechanisms of negative regulation that differentiate between TLR7 and TLR9 have not been described. Here we report a new function for the TLR trafficking chaperone Unc93b1 that specifically limits signaling of TLR7, but not TLR9, and prevents TLR7-dependent autoimmunity in mice. We find that mutations in Unc93b1 leading to enhanced TLR7 signaling also disrupt binding to Syntenin-1, a protein implicated in exosome biogenesis. Both Unc93b1 and TLR7 are detectable in exosomes, suggesting that Unc93b1 recruitment of Syntenin-1 facilitates sorting of TLR7 into intralumenal vesicles of multivesicular bodies which terminates signaling. Syntenin-1 binding requires phosphorylation of Unc93b1, providing a mechanism for dynamic regulation of TLR7 activation and signaling. Thus, Unc93b1 not only enables proper trafficking of nucleic acidsensing TLRs but also sets the activation threshold of potentially self-reactive TLR7.Recognition of nucleic acids enables detection of diverse pathogens by a limited number of innate immune receptors but also exposes the host to potential autoimmunity 2,3 . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Background Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota. Methodology and Principal Findings Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals. Conclusions and Significance This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease.
Nucleic acid-sensing Toll-like receptors (TLRs) are subject to complex regulation to facilitate recognition of microbial DNA and RNA while limiting recognition of self-nucleic acids 1 . Failure to properly regulate these TLRs can lead to autoimmune and autoinflammatory disease [2][3][4][5][6] . Intracellular localization of these receptors is thought to be critical for self vs. non-self discrimination 7 , yet the molecular mechanisms that reinforce compartmentalized activation of intracellular TLRs remain poorly understood. Here we describe a new mechanism that prevents TLR9 activation from locations other than endosomes. This control is achieved through the regulated release of the receptor from its trafficking chaperone Unc93b1, which only occurs within endosomes and is required for ligand binding and signal transduction. Preventing TLR9 release from Unc93b1, either through mutations in Unc93b1 that increase affinity for TLR9 or through an artificial tether that impairs release, results in defective signaling. While TLR9 and TLR3 release from Unc93b1, TLR7 does not dissociate from Unc93b1 in endosomes and is regulated via distinct mechanisms. This work defines a new checkpoint that reinforces compartmentalized activation of TLR9 and provides a mechanism by which activation of individual endosomal TLRs may be distinctly regulated.The multi-pass transmembrane protein Unc93b1 contributes to the compartmentalized activation of nucleic acid-sensing TLRs by mediating their trafficking from the ER to endosomes 8 . Mutations in Unc93b1 that result in aberrant TLR trafficking can lead to autoimmune disease 3,9 . It has been suggested that Unc93b1 may regulate additional sorting steps that are distinct between individual TLRs 10 ; however, the mechanisms by which Reprints and permissions information is available at www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.