Knowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as reference substrates. The influence of different graphene substrates on nucleation and further lateral and vertical growth of the Bi2Se3 nanoplates is analysed. Possibility to obtain ultrathin Bi2Se3 thin films on these substrates is evaluated. Between the substrates considered in this work, graphene grown on silicon carbide is found to be the most promising substrate for obtaining of 1–5 nm thick Bi2Se3 films.
This study presents a thorough investigation of Na2FeP2O7 (NFP) cathode material for sodium-ion batteries and its composites with carbon and reduced graphene oxide (rGO). Our findings demonstrate that rGO sheets improve cycling performance in NFP/C/rGO composite in the absence of solid electrolyte interphase (SEI)-stabilizing additives. However, once SEI is stabilized with the help of fluoroethylene carbonate electrolyte additive, NFP with carbon additive (NFP/C) exhibits a superior electrochemical performance when compared to NFP/rGO and NFP/C/rGO composites. The decreases in capacity and rate capability are proportional to the amount of rGO added, and lead to an increase in overvoltage and internal resistance. Based on our results, we attribute this effect to worsened sodium kinetics in the bulk of the electrode—the larger ionic radius of Na+ hinders charge transfer in the presence of rGO, despite the likely improved electronic conductivity. These findings provide a compelling explanation for the observed trends in electrochemical performance and suggest that the use of rGO in Na-ion battery electrodes may present challenges associated with ionic transport along and through rGO sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.