We experimentally, numerically and theoretically investigate the nonlinear interaction between a cavitation bubble and the interface of two immiscible fluids (oil and water) on multiple time scales. The underwater electric discharge method is utilized to generate a cavitation bubble near or at the interface. Both the bubble dynamics on a short time scale and the interface evolution on a much longer time scale are recorded via high-speed photography. Two mechanisms are found to contribute to the fluid mixing in our system. First, when a bubble is initiated in the oil phase or at the interface, an inertia-dominated high-speed liquid jet generated from the collapsing bubble penetrates the water–oil interface, and consequently transports fine oil droplets into the water. The critical standoff parameter for jet penetration is found to be highly dependent on the density ratio of the two fluids. Furthermore, the pinch-off of an interface jet produced long after the bubble dynamics stage is reckoned as the second mechanism, carrying water droplets into the oil bulk. The dependence of the bubble jetting behaviours and interface jet dynamics on the governing parameters is systematically studied via experiments and boundary integral simulations. Particularly, we quantitatively demonstrate the respective roles of surface tension and viscosity in interface jet dynamics. As for a bubble initiated at the interface, an extended Rayleigh–Plesset model is proposed that well predicts the asymmetric dynamics of the bubble, which accounts for a faster contraction of the bubble top and a downward liquid jet.
Sulforaphane (1-isothiocyanate-4-methyl sulfonyl butane) is a plant extract (obtained from cruciferous vegetables, such as broccoli and cabbage) and is known to exert anticancer, antioxidant and anti-inflammatory effects. It stimulates the generation of human or animal cells, which is beneficial to the body. The aim of the current study was to determine whether sulforaphane protects against lipopolysaccharide (LPS)‑induced acute lung injury (ALI) through its anti-inflammatory effects, and to investigate the signaling pathways involved. For this purpose, male BALB/c mice were treated with sulforaphane (50 mg/kg) and 3 days later, ALI was induced by the administration of LPS (5 mg/kg) and we thus established the model of ALI. Our results revealed that sulforaphane significantly decreased lactate dehydrogenase (LDH) activity (as shown by LDH assay), the wet-to-dry ratio of the lungs and the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (measured by ELISA), as well as nuclear factor-κB protein expression in mice with LPS-induced ALI. Moreover, treatment with sulforaphane significantly inhibited prostaglandin E2 (PGE2) production, and cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9) protein expression (as shown by western blot analysis), as well as inducible nitric oxide synthase (iNOS) activity in mice with LPS-induced ALI. Lastly, we noted that pre-treatment with sulforaphane activated the nuclear factor-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in the mice with LPS-induced ALI. These findings demonstrate that sulforaphane exerts protective effects against LPS-induced ALI through the Nrf2/ARE pathway. Thus, sulforaphane may be a potential a candidate for use in the treatment of ALI.
Patients with pulmonary fibrosis often have low vitamin D levels, the effects of which are largely unknown. We here report that early vitamin D supplementation significantly reduced the severity of pulmonary fibrosis and inflammatory cell accumulationin in the bleomycin-induced pulmonary fibrosis mouse model on supplementary days 14, 21 and 28 (P < 0.001). Vitamin D supplementation also prevented some ultrastructural changes in response to bleomycin administration, including basement membrane thickening, interstitial fibrin deposition and microvilli flattening or disappearance on days 14, 21 and 28, and lamellar body swelling or vacuolation on days 21 and 28. The bleomycin group had rising hydroxyproline level on days 14, 21 and 28, whereas the vitamin D treatment group showed consistently lower hydroxyproline level but still higher than that of the control group (P < 0.001). Our immunohistochemistry and densitometry analyses showed less staining for α-smooth muscle actin, a myofibroblast marker, in the vitamin D group compared to the bleomycin group (P < 0.001). Thus, vitamin D treatment could prevent bleomycin-induced pulmonary fibrosis by delaying or suppressing ultrastructural changes, as well as attenuating hydroxyproline accumulation and inhibiting myofibroblastic proliferation. These data further our understanding of the roles of vitamin D in pulmonary fibrogenesis and in the treatment of pulmonary fibrosis.
Elevated tropospheric ozone concentration (O3) increases oxidative stress in vegetation and threatens the stability of crop production. Current O3 pollution in the United States is estimated to decrease the yields of maize (Zea mays) up to 10%, however, many bioenergy feedstocks including switchgrass (Panicum virgatum) have not been studied for response to O3 stress. Using Free Air Concentration Enrichment (FACE) technology, we investigated the impacts of elevated O3 (~100 nmol mol−1) on leaf photosynthetic traits and capacity, chlorophyll fluorescence, the Ball–Woodrow–Berry (BWB) relationship, respiration, leaf structure, biomass and nutrient composition of switchgrass. Elevated O3 concentration reduced net CO2 assimilation rate (A), stomatal conductance (gs), and maximum CO2 saturated photosynthetic capacity (Vmax), but did not affect other functional and structural traits in switchgrass or the macro- (except potassium) and micronutrient content of leaves. These results suggest that switchgrass exhibits a greater O3 tolerance than maize, and provide important fundamental data for evaluating the yield stability of a bioenergy feedstock crop and for exploring O3 sensitivity among bioenergy feedstocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.