Aberrant insulin-like growth factor I receptor (IGF1R) signaling pathway serves as a well-established target for cancer drug therapy. The intragenic antisense long noncoding RNA (lncRNA) IRAIN, a putative tumor suppressor, is downregulated in breast cancer cells, while IGF1R is overexpressed, leading to an abnormal IGF1R/IRAIN ratio that promotes tumor growth. To precisely target this pathway, we developed an “antisense lncRNA-mediated intragenic cis competition” (ALIC) approach to therapeutically correct the elevated IGF1R/IRAIN bias in breast cancer cells. We used CRISPR-Cas9 gene editing to target the weak promoter of IRAIN antisense lncRNA and showed that in targeted clones, intragenic activation of the antisense lncRNA potently competed in cis with the promoter of the IGF1R sense mRNA. Notably, the normalization of IGF1R/IRAIN transcription inhibited the IGF1R signaling pathway in breast cancer cells, decreasing cell proliferation, tumor sphere formation, migration, and invasion. Using “nuclear RNA reverse transcription-associated trap” sequencing, we uncovered an IRAIN lncRNA-specific interactome containing gene targets involved in cell metastasis, signaling pathways, and cell immortalization. These data suggest that aberrantly upregulated IGF1R in breast cancer cells can be precisely targeted by cis transcription competition, thus providing a useful strategy to target disease genes in the development of novel precision medicine therapies.
Background
Breast cancer is the most common cancer among women worldwide. Here, we report the prevalence of BRCA1/2 mutations in patients with high‐risk breast cancer from Inner Mongolia and Jilin, China, which was a part of a nationwide project on the detection of BRCA1/2 mutations in Chinese patients with hereditary breast cancer.
Methods
According to the criteria, index patients from a total of 245 independent families were initially recruited. All 49 exons of BRCA1 and BRCA2 and adjacent noncoding regions were screened for mutations based on next‐generation sequencing from collected saliva.
Results
We detected 17 BRCA1/2 variants in 18 of 216 (8.3%) index patients with high‐risk breast cancer. Among these, seven mutations were novel, including four BRCA1 mutations (c.123_124delCAinsAT, c.5093_5096delCTAA, c.5396‐2A>G, and c.2054delinsGAAGAGTAACAAGTAAGAAGAGTAACAAGAAG), and three BRCA2 mutations (c.304A>T, c.7552_7553insT, and c.9548_9549insA). The BRCA1/2 variants were identified in 14% (8/57) of the patients with triple‐negative breast cancer and in 6.3% (10/159) of the patients with non‐triple‐negative breast cancer. There was no significant difference between the two groups (p = 0.07). A higher frequency for BRCA1 mutations was observed in patients with triple‐negative breast cancer than in those with non‐triple‐negative breast cancer (12.3% vs. 2.5%, p = 0.004). The frequencies of the BRCA2 mutations were not significantly different between patients with triple‐negative breast cancer and those with non‐triple‐negative breast cancer (1.8% vs. 3.8%, p = 0.46).
Conclusion
We found that patients with triple‐negative breast cancer had a higher frequency of BRCA1 mutations than those with non‐triple‐negative breast cancer. In this study, no significant associations between the BRCA1/2 mutation status and age, family history of breast cancer, ovarian cancer, pancreatic cancer and prostate cancer, number of primary lesions, tumor size, or lymph node metastasis were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.