In this communication, a bis-silane prepolymer was used to modify epoxy resin, aiming to enhance the corrosion resistance of epoxy coatings on aluminum alloy substrates. The bis-silane prepolymer was prepared by tetraethoxysilane (TEOS) and γ-glycidoxypropyl trimethoxysilane (GPTMS). The corrosion behavior of silane-epoxy coatings was studied. Compared with silane monomer-modified epoxy coatings, bis-silane-modified epoxy coatings have lower coating capacitance (Cc), higher charge transfer resistances (Rdl), and lower double layer capacitance (Cdl) during long-time immersion. It indicates that bis-silane-modified epoxy coating has stronger waterproof permeability and substrate corrosion protection ability. In addition, due to the leaching of the silane component and cross-linking reaction between different silanes during the immersion process, the bis-silane-modified epoxy coatings exhibit much stronger “self-healing” ability.
In order to enhance wear properties of Al-Zn-Mg-Cu alloy parts, Al2O3-MoO2-SiO2 composite ceramic coatings are formed on Al-Zn-Mg-Cu alloy by the DC micro-arc oxidation (MAO) method in the silicate electrolyte with sodium molybdate. Effects of sodium molybdate concentration on the structure characteristics and wear resistance of the composite ceramic coatings are analyzed by scanning electron microscopy, X-ray diffraction and the wear test, respectively. Analyses indicate that the composite coating consists of different states of Al2O3, MoO2 and mullite phase. With the addition of molybdate in the electrolyte, the morphology and structure are changed. The tribological behavior is greatly affected by the surface characteristics and hardness of the coatings. The composite coatings formed by adding 3 g/L of sodium molybdate electrolyte have the best wear resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.