Flexible ammonia (NH 3 ) sensors based on one-dimensional nanostructures have attracted great attention due to their high flexibility and low power consumption. However, it is still challenging to reliably and cost-effectively fabricate ordered nanostructure-based flexible sensors. Herein, a smartphoneenabled fully integrated system based on a flexible nanowire sensor was developed for real-time NH 3 monitoring. Highly aligned, sub-100 nm nanowires on a flexible substrate fabricated by facile and low-cost soft lithography were used as sensitive elements to produce impedance response. The detection signals were sent to a smartphone and displayed on the screen in real time. This nanowirebased sensor exhibited robust flexibility and mechanical durability. Moreover, the integrated NH 3 sensing system presented enhanced performance with a detection limit of 100 ppb, as well as high selectivity and reproducibility. The power consumption of the flexible nanowire sensor was as low as 3 μW. By using this system, measurements were carried out to obtain reliable information about the spoilage of foods. This smartphone-enabled integrated system based on a flexible nanowire sensor provided a portable and efficient way to detect NH 3 in daily life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.