This paper proposes a robust wavelet-based tightly coupled Global Positioning System (GPS)/ Beidou Navigation Satellite System (BDS)/Inertial Navigation System (INS) integration scheme aiming to improve the overall position accuracy during signal outages. A robust wavelet denoising model based on a-trimmed mean filter demonstrates its effectiveness on noise reduction and gross error elimination of inertial sensor raw data. Thereafter, a robust wavelet-based tightly coupled GPS/BDS/INS integration scheme is proposed, and GPS/BDS double-difference (DD) carrier-phase and pseudorange measurements are introduced to build a 27-state tightly coupled GPS/BDS/INS integration equation. An extended Kalman filter (EKF) has been designed for state estimation, and the inclusion of BDS enhances the satellite geometric strength of the whole navigation system. A field vehicle test indicates that the position accuracy of five simulated GPS/ BDS outages can be improved by about 7,16, and 33% for north, east, and up components with the proposed scheme compared to standard integration scheme, and gross errors have been detected and eliminated with the new integration scheme. The authors also find that the BDS phase residual is larger than GPS and satellite dependent in the tightly coupled GPS/BDS/INS integrated navigation system.
Abstract:The Quasi-Zenith Satellite System (QZSS) service area covers the Asia-Pacific region and there are four quasi-zenith satellites (QZS) in orbit with three QZS in operation until March 2018. The QZSS is not required to work in a stand-alone mode, but the system can be used to enhance the Global Positioning System (GPS) or Beidou Satellite Navigation System (BDS). The availability, position dilution of precision (PDOP), ambiguity dilution of precision (ADOP), and success rate of GPS/QZSS and BDS/QZSS under different cut-off elevation angles were compared based on a simulation. Two sets of actual QZSS data were processed and analyzed for single-frequency single-epoch (SFSE) positioning together with GPS/BDS data in this paper. Different combination forms were executed to evaluate the positioning performance of GPS/QZSS and BDS/QZSS for two baseline cases. The results indicate that QZSS is able to increase the SFSE PDOP, ADOP, and success rate of the baseline resolution and decrease the position error for GPS or BDS, especially for longer GPS baseline data. The more QZS are used, the better the enhancement effect.
In modern geodesy, there are cases in which the target frame is unique and there is more than one source frame. Helmert transformations, which are extensively used to solve transformation parameters, can be separately solved between the target frame and one of the source frames. However, this is not globally optimal, even though each transformation is locally optimal on its own. Additionally, this also generates the problem of multiple solutions in the noncommon station of the target frame. Moreover, least squares solutions can cause estimation value distortion, with a gross error existing in observations. Thus, in this paper, Helmert transformations among three frames, that is, one target frame and two source frames, are studied as an example. A robust prediction algorithm based on the general errors-in-variables prediction algorithm and the robust estimation is derived in detail and is applied to achieve multiframe total transformation. Furthermore, simulation experiments were conducted and the results validated the superiority of the proposed total transformation method over classical separate approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.