Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs and are associated with numerous diseases, including cancer, cardiovascular diseases, and type 2 diabetes mellitus (T2DM). However, the association between circRNAs and inflammation or inflammatory cytokines in patients with T2DM remains to be fully elucidated. The purpose of the present study was to investigate the expression profiles of circRNAs in peripheral leucocytes of patients with T2DM and their association with inflammatory cytokines. Peripheral blood from patients with T2DM (n=43) and healthy individuals (n=45) were collected for RNA sequencing and later verification. Reverse transcription-polymerase chain reaction (RT-PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were used to detect the expression levels of circRNAs. The expression of inflammatory factors, including interleukin (IL)-1, (IL)-6, and tumor necrosis factor (TNF)-α were measured via enzyme-linked immunosorbent assay. Furthermore, the mRNA expression level of ankyrin repeat domain 36 (ANKRD36), a protein located at 2q11.2 that interacts with the GAPDH gene, was measured using RT-qPCR analysis. The circRNA/microRNA (miRNA) interaction was predicted using RegRNA and mirPath software. In total, 220 circRNAs were found to be differentially expressed between patients with T2DM and healthy individuals, of which 107 were upregulated and 113 were downregulated. Among the nine selected circRNAs, circANKRD36 was significantly upregulated in patients with T2DM compared with control subjects (P=0.02). The expression level of circANKRD36 was positively correlated with glucose and glycosylated hemoglobin (r=0.3250, P=0.0047 and r=0.3171, P=0.0056, respectively). The expression level of IL-6 was significantly different between the T2DM group and control group (P=0.028) and was positively correlated with circANKRD36. The difference of circANKRD36 host gene expression between patients with T2DM and healthy controls was significant (P=0.04). Taken together, circANKRD36 may be involved in T2DM and inflammation-associated pathways via interaction with miRNAs, including hsa-miR-3614-3p, hsa-miR-498, and hsa-miR-501-5p. The expression of circANKRD36 was up regulated in peripheral blood leucocytes and was correlated with chronic inflammation in T2DM. Therefore, circANKRD36 can be used as a potential biomarker for screening chronic inflammation in patients with T2DM.
Invasive fungal infections acquired in the hospital have progressively emerged as an important cause of life-threatening infection. In particular, airborne fungi in hospitals are considered critical pathogens of hospital-associated infections. To identify the causative airborne microorganisms, high-volume air samplers were utilized for collection, and species identification was performed using a culture-based method and DNA sequencing analysis with the Illumina MiSeq and HiSeq 2000 sequencing systems. Few bacteria were grown after cultivation in blood agar. However, using microbiome sequencing, the relative abundance of fungi, Archaea species, bacteria and viruses was determined. The distribution characteristics of fungi were investigated using heat map analysis of four departments, including the Respiratory Intensive Care Unit, Intensive Care Unit, Emergency Room and Outpatient Department. The prevalence of Aspergillus among fungi was the highest at the species level, approximately 17% to 61%, and the prevalence of Aspergillus fumigatus among Aspergillus species was from 34% to 50% in the four departments. Draft genomes of microorganisms isolated from the hospital environment were obtained by sequence analysis, indicating that investigation into the diversity of airborne fungi may provide reliable results for hospital infection control and surveillance.
Highlights
CEST MRI under non-equilibrium conditions is prone to measurement variabilities.
The QUASS algorithm reconstructs the equilibrium CEST effect from measurements.
The QUASS CEST algorithm enables fast and equilibrium tumor imaging at 3 T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.