Background The genetic basis of lacunar stroke is poorly understood, with a single locus on 16q24 identified to date. We sought to identify novel associations and provide mechanistic insights into the disease. MethodsWe did a pooled analysis of data from newly recruited patients with an MRI-confirmed diagnosis of lacunar stroke and existing genome-wide association studies (GWAS). Patients were recruited from hospitals in the UK as part of the UK DNA Lacunar Stroke studies 1 and 2 and from collaborators within the International Stroke Genetics Consortium. Cases and controls were stratified by ancestry and two meta-analyses were done: a European ancestry analysis, and a transethnic analysis that included all ancestry groups. We also did a multi-trait analysis of GWAS, in a joint analysis with a study of cerebral white matter hyperintensities (an aetiologically related radiological trait), to find additional genetic associations. We did a transcriptome-wide association study (TWAS) to detect genes for which expression is associated with lacunar stroke; identified significantly enriched pathways using multi-marker analysis of genomic annotation; and evaluated cardiovascular risk factors causally associated with the disease using mendelian randomisation.Findings Our meta-analysis comprised studies from Europe, the USA, and Australia, including 7338 cases and 254 798 con trols, of which 2987 cases (matched with 29 540 controls) were confirmed using MRI. Five loci (ICA1L-WDR12-CARF-NBEAL1, ULK4, SPI1-SLC39A13-PSMC3-RAPSN, ZCCHC14, ZBTB14-EPB41L3) were found to be associa ted with lacunar stroke in the European or transethnic meta-analyses. A further seven loci (SLC25A44-PMF1-BGLAP,
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
BackgroundThe optimal timing to administer non–vitamin K oral anticoagulants (NOACs) in patients with acute ischemic stroke and atrial fibrillation is unclear. This prospective observational multicenter study evaluated the rates of early recurrence and major bleeding (within 90 days) and their timing in patients with acute ischemic stroke and atrial fibrillation who received NOACs for secondary prevention.Methods and ResultsRecurrence was defined as the composite of ischemic stroke, transient ischemic attack, and symptomatic systemic embolism, and major bleeding was defined as symptomatic cerebral and major extracranial bleeding. For the analysis, 1127 patients were eligible: 381 (33.8%) were treated with dabigatran, 366 (32.5%) with rivaroxaban, and 380 (33.7%) with apixaban. Patients who received dabigatran were younger and had lower admission National Institutes of Health Stroke Scale score and less commonly had a CHA 2 DS 2‐VASc score >4 and less reduced renal function. Thirty‐two patients (2.8%) had early recurrence, and 27 (2.4%) had major bleeding. The rates of early recurrence and major bleeding were, respectively, 1.8% and 0.5% in patients receiving dabigatran, 1.6% and 2.5% in those receiving rivaroxaban, and 4.0% and 2.9% in those receiving apixaban. Patients who initiated NOACs within 2 days after acute stroke had a composite rate of recurrence and major bleeding of 12.4%; composite rates were 2.1% for those who initiated NOACs between 3 and 14 days and 9.1% for those who initiated >14 days after acute stroke.ConclusionsIn patients with acute ischemic stroke and atrial fibrillation, treatment with NOACs was associated with a combined 5% rate of ischemic embolic recurrence and severe bleeding within 90 days.
We have previously reported a robust association between an allelic haplotype of 'Disrupted in Schizophrenia 1' (DISC1) and schizophrenia in a nationwide collection of Finnish schizophrenia families. This specific DISC1 allele was later identified to associate with visual working memory, selectively in males. DISC1 association to schizophrenia has since been replicated in multiple independent study samples from different populations. In this study, we conditioned our sample of Finnish families for the presence of the Finnish tentative risk allele for DISC1 and re-analyzed our genome-wide scan data of 443 markers on the basis of this stratification. Two additional loci displayed an evidence of linkage (LOD > 3) and included a locus on 16p13, proximal to the gene encoding NDE1, which has been shown to biologically interact with DISC1. Although none of the observed linkages remained significant after multiple test correction through simulation, further analysis of NDE1 revealed an association between a tag-haplotype and schizophrenia (P = 0.00046) specific to females, which proved to be significant (P = 0.011) after multiple test correction. Our finding would support the concept that initial gene findings in multifactorial diseases will assist in the identification of other components of complex genetic etiology. Notably, this and other converging lines of evidence underline the importance of DISC1-related functional pathways in the etiology of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.