Delphinidin-3-rutinoside, a high-value of anthocyanin, was isolated and purified by ionic liquid (IL)-modified countercurrent chromatography (CCC) from waste peel of eggplant (Solanum melongena), one of the most common vegetables consumed all around the world. Different conventional CCC and IL-CCC solvent systems were evaluated in respect of partition coefficient (K), separation factor (α), and stationary phase retention factor (S f ) to separate polar target and other components. Basic solvent system, kind of ILs, and amount of ILs were systematically optimized by totally Ktargeted strategy, which drastically reduced the experimental effort. Finally, a novel CCC two-phase solvent system (methyl tert-butyl ether-butanol-acetonitrile-1% trifluoroacetic acid water-1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 MIM][PF 6 ]) [2:4:1:5:0.2; v/v/v/v/v]) was successfully established and applied. The baseline separation of target fraction was obtained in one cycle process. The purity of delphinidin-3-rutinoside was over 99%. Moreover, the distribution behavior of different kinds of ILs in biphasic solvent system and the removal method of ILs were explored. The results showed that hydrophobic IL significantly improved the partition of polar anthocyanin in organic solvent system, thereby the separation resolution and stationary phase retention through introducing intermolecular forces. This IL-modified CCC strategy may be applied for the separation of other anthocyanins from variety of natural food resources and waste.
The utilization of deep eutectic solvent as an alternative and environmentally friendly option has gained significant attention. This study first proposed a series of benzylammonium chloride based-deep eutectic systems for the extraction of bioactive compounds from Gardenia jasminoides Ellis. Through the implementation of response surface methodology, the optimal solvent was determined to be dodecyldimethylbenzylammonium chloride-levulinic acid (1:3, mol/mol) with 35% (v/v) water, specifically tailored to extract geniposide, genipin-1-β-dgentiobioside, crocin-1, and crocin-2 from gardenia fruits with the ratio of solid to liquid of 1:20 at 86 • C for 16 min. Their total extraction yields could reach 70.6 mg/g, outperforming those obtained by other solvents and corresponding techniques. Furthermore, the eutectic system was retrieved after first-cycle extraction, and then applied in the subsequent extraction progress, yielding a consistent extraction efficiency of 97.1%. As compared to previous traditional methods, a quick, high-yielding, and green extraction procedure was achieved through simple heating settings that did not constrain the instrument. Therefore, dodecyldimethylbenzylammonium chloride-levulinic acid could serve as a sustainable and reusable solvent for efficient extraction of natural bioactive compounds from plant-based raw materials. The application of deep eutectic solvents has demonstrated their potential as designable solvents with stronger extraction capabilities than traditional organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.