Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes
Process mining aims at extracting information from event logs to capture the business process as it is being executed. Process mining is particularly useful in situations where events are recorded but there is no system enforcing people to work in a particular way. Consider for example a hospital where the diagnosis and treatment activities are recorded in the hospital information system, but where health-care professionals determine the "careflow." Many process mining approaches have been proposed in recent years. However, in spite of many researchers' persistent efforts, there are still several challenging problems to be solved. In this paper, we focus on mining non-freechoice constructs, i.e., situations where there is a mixture of choice and synchronization. Although most real-life processes exhibit non-free-choice behavior, existing algorithms are unable to adequately deal with such constructs. Using a Petri-net-based representation, we will show that there are two kinds of causal dependencies between tasks, i.e., explicit and implicit ones. We propose an algorithm that is able to deal with both kinds of dependencies. The algorithm has
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.