Anthocyanins are important components in skins of red table grapes and contribute to the berries appearance, a key quality characteristic for customers. In recent years, exogenous foliage fertilizers has been applied to grapevines to improve the pigmentation of the fruit. The present study examines the effect on a biostimulant (SUNRED) pre-
véraison
application in the accumulation of anthocyanins in ‘Red Globe’ grapes, and investigates the related changes in expression of key genes and their enzyme activities in the flavonoid pathways. Additionally, abscisic acid (S-ABA) was also applied to grapevines to evaluate the comparative effect of SUNRED. Our analyses showed that total anthocyanin contents increased in both SUNRED and S-ABA treated grapes; for S-ABA, a 1% dilution (A100) of the commercially available stock solution treatments represented the greatest effect on pigmentation; for SUNRED, a 0.1% dilution (S1000) was most effective. The anthocyanin contents increased by 1.16-fold and 1.4-fold after A100 and S1000 treatments, respectively. The gene expression analyses showed that almost all genes involved in the anthocyanin biosynthesis pathway up-regulated after A100 and S1000 treatments, suggesting that the increment in total anthocyanin content was attributed to the increased expression level of related genes. Moreover, the activities of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), UDP glucose: flavonoid 3-o-glucosyl transferase (UFGT) and dihydroflavonol 4-reductase (DFR), key enzymes for biosynthesis of anthocyanin, were increased by the exogenous treatments. Overall, our findings clearly demonstrate that application of exogenous biostimulant have a positive effect on the pigment characteristics of grape crop.
Although melatonin was affirmed to alleviate drought stress in various plant species, the mechanism in kiwifruit remains to be elucidated. In this study, the transcriptomes of kiwifruit leaves under control (CK), DR (drought stress), and MTDR (drought plus melatonin) treatments were evaluated. After comparisons of the gene expression between DR and MTDR, the differentially expressed genes (DEGs) were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated three significant pathways, which were mainly involved in the glutathione metabolism, ascorbate and aldarate metabolism, and carotenoid metabolism. Therefore, the content and metabolic gene expression level of ascorbic acid (AsA), glutathione, and carotenoid were higher in the MTDR treatment than that in others. Furthermore, the activity and mRNA expression level of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were also promoted in the MTDR group. Combined with these results of important secondary metabolites and protective enzymes measured in the seedlings in different treatments, it could be concluded that exogenous melatonin induced the ascorbic acid-glutathione (AsA-GSH) cycle, carotenoid biosynthesis, and protective enzyme system to improve seedling growth. Our results contribute to the development of a practical method for kiwifruit against drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.