of the 2D structures has approached its limit (< 90%) due to which the energy loss via reflection (2-5%) and thermal radiation heat loss (8-12%) occurs in all the 2D structures.One of the effective strategies for further improving the vapor-generation efficiency is to decrease the surface temperature of the absorber by increasing the surface area within a given projection area. [22] Some unprecedented vapor-generation rates have been reported in various 3D generators, which are all beyond the input solar energy limit. [23][24][25] Here, we have found that bamboos, as a natural hierarchical cellular material, can be excellent 3D solar vapor-generation devices due to their unique structural features. By a simple carbonization progress, the bamboos maintain remarkable mechanical property. Meanwhile, the carbonized bamboo-based evaporator possesses the following advantages: 1) natural hydrophilicity; 2) numerous aligned microchannels acting as highways for rapid water transport; 3) high light absorptance in a broad spectral range; 4) reduced thermal radiation heat loss; 5) lower average temperature than environment; 6) reduced vaporization enthalpy of water confined in the bamboo mesh; 7) remarkable mechanical properties; 8) ability of salt self-cleaning; 9) good scalability and low cost. As a result, a floating carbonized bamboo sample can evaporate water with an extremely high vapor-generation rate of 3.13 kg m −2 h −1 under 1 sun illumination. It also shows superior reusability and stability for solar vapor generation, without any performance degradation after cycling 360 h. The carbonized bamboo shows favorable overall performance compared with other reported solar vapor generators and has attractive applications in desalination as well asindustrial and domestic wastewater abatement. All of these features are elucidated below in detail.Bamboo is the fastest-growing and highest-yielding hierarchical cellular material on the Earth. A typical bamboo reaches maturity within months and ultimate mechanical properties within few years, making it one of the most renewable resources. [26] Figure 1a-c shows the illustration of the design concept for a bamboo-based solar vapor-generation device. Bamboo tubes with desired height were cut from the natural bamboo and were carbonized to make it dark. The carbonized Given the global challenges of water scarcity, solar-driven vapor generation has become a renewed topic as an energy-efficient way for clean water production. Here, it is revealed that bamboo, as a natural hierarchical cellular material, can be an excellent 3D solar vapor-generation device by a simple carbonization progress. A floating carbonized bamboo sample evaporates water with an extremely high vapor-generation rate of 3.13 kg m −2 h −1 under 1 sun illumination. The high evaporation rate is achieved by the unique natural structure of bamboos. The inner wall of bamboo recovers the diffuse light energy and the thermal radiation heat loss from the 3D bamboo bottom, and the outer wall captures energy from the warmer...
Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.