The microfluidic device (MFD) with a glass–PDMS–glass (G-P-G) structure is of interest for a wide range of applications. However, G-P-G MFD fabrication with an ultra-thin PDMS film (especially thickness less than 200 μm) is still a big challenge because the ultra-thin PDMS film is easily deformed, curled, and damaged during demolding and transferring. This study aimed to report a thickness-controllable and low-cost fabrication process of the G-P-G MFD with an ultra-thin PDMS film based on a flexible mold peel-off process. A patterned photoresist layer was deposited on a polyethylene terephthalate (PET) film to fabricate a flexible mold that could be demolded softly to achieve a rigid structure of the glass–PDMS film. The thickness of ultra-thin patterned PDMS could reach less than 50 μm without damage to the PDMS film. The MFD showcased the excellent property of water evaporation inhibition (water loss < 10%) during PCR thermal cycling because of the ultra-thin PDMS film. Its low-cost fabrication process and excellent water evaporation inhibition present extremely high prospects for digital PCR application.
To address the problem that bonding can lead to a reduction in the surface shape precision of a space-bound mirror, relationships between mirror deformation, thermal stress, and curing shrinkage stress were studied, and a bonding microstress design route was proposed. The thermal stress and thermal deformation introduced by thermal expansion mismatch were eliminated through an athermal adhesive layer thickness design. The relationship between mirror deformation and the curing shrinkage of the adhesive layer was derived completely, and structural optimization measures for releasing the curing stress of the adhesive layer are given. Bonding stress analysis was conducted based on the equivalent thermal deformation method, and an optimal structure meeting the design requirements was obtained. Finally, bonding of the mirror assembly was completed via this route, and the measured surface shape precision was stable at 0.0225λ. The theoretical analysis and experimental study demonstrate that this bonding design method can predict the bonding stress in the assembly process, making the follow-up bonding result controllable. These results should provide an excellent reference for the design and high-precision integration of large-aperture mirrors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.