Closing the zipper: A method for the bottom‐up organic synthesis of defect‐free graphene nanoribbons in solution has been developed. Polyphenylene precursors with a unique kinked backbone enabled full cyclodehydrogenation in a single reaction step by an intramolecular Scholl reaction with FeCl3 (see scheme).
The reduction of corannulene (1) has been followed by parallel detection of optical absorption, electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR) spectroscopies. The major findings are the existence of a diamagnetic dianion that can be observed in NMR and negligable counterion influences in the monoand dianion. The diamagnetic state of the dianion is also supported by vanishing EPR intensity and semiempirical calculations and exhibits one indistinguishable proton NMR resonance at -5.6 ppm for potassium and lithium as counterions, respectively. The NMR signal is strongly temperature dependent and can only be obtained at low temperature (T < 230 K) where the line width decreases with temperature. Further reduction to the trianion and tetraanion succeeds with Li as the reducing metal, but not with K even at ambient temperatures. The EPR spectra of the trianion show a pronounced temperature dependence with at least two Li cations being strongly coupled.
In a polymer analogous approach, large dendritic oligophenylenes containing benzene and tetraphenylmethane cores are transformed via oxidative cyclodehydrogenation to novel propeller-shaped molecules with large polycyclic aromatic hydrocarbon units as "blades". Structure analysis is performed by a combination of MALDI-TOF mass spectrometry, UV/vis, fluorescence, and Raman spectroscopy using solid-state sample preparation methods. These methods are also utilized to determine the degree of the cyclodehydrogenation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.