Purpose As a kind of opportunist pathogen, Staphylococcus epidermidis (MRSE) can cause nosocomial infections and easily evolve into resistant bacteria. Among these, methicillin-resistant Staphylococcus epidermidis (MRSE) exhibit significantly higher rates. Our previous study showed that Patrinia scabiosaefolia (PS) possessed strong antibacterial activity against MRSE. However, the mechanism of PS against MRSE is not clear. Methods Here, a tandem mass tag-based (TMT) proteomic analysis was performed to elucidate the potential mechanism of PS against MRSE. We compared the differential expression proteins of MRSE under PS stress. Results Based on a fold change of >1.2 or < 1/1.2 (with p value set at <0.05), a total of 248 proteins (128 up-regulated proteins, 120 down-regulated proteins) were identified. Bioinformatic analysis showed that proteins including arginine deiminase ( arcA ), ornithine carbamoyltransferase ( arcB ) and carbamate kinase ( arcC ), serine–tRNA ligase ( serS ), phenylalanine–tRNA ligase beta and subunit ( pheT ), DltD ( dlt ), d-alanyl carrier protein ( dlt ), accumulation-associated protein ( SasG ), serine-aspartate repeat-containing protein C ( SdrC ) and hemin transport system permease protein HrtB (VraG ) played important roles in mechanism of PS against MRSE. Conclusion In summary, these results indicated that arginine deiminase pathway (ADI) pathway, protein synthesis, cell wall synthesis, biofilm formation and uptake of iron were related to mechanisms of PS against MRSE. Our findings provide an insight into the the mechanism of PS against MRSE, and may be valuable in offering new targets to develop more anti-MRSE drugs.
Propionibacterium acnes (P. acnes) is a major pathogen of acne vulgaris. The traditional Chinese medicine (TCM) compound prescription, Dian Dao San (DDS), is effective for treating P. acnes. Previous clinical work by our team demonstrated that improved Dian Dao San (IDDS) has better antibacterial effects. However, the mechanism of IDDS inhibition of P. acnes is still unknown. Hence, the isobaric tags for relative and absolute quantitation (iTRAQ) technology was applied to explore the antibacterial mechanism of IDDS against P. acnes. Our results suggested that the antibacterial mechanism of IDDS was related to the glycolytic pathway. gap, pgk, and tpiA enzymes were found to be potential target proteins in the bacterial glycolytic pathway as an antibacterial mechanism of inhibition. In addition, SEM and TEM analyses revealed that IDDS may destruct bacterial plasma membrane and cell wall. The results provide a reliable, direct, and scientific theoretical basis for wide application of IDDS.
Staphylococcus epidermidis has become one of the most common causes of septicemia. Meanwhile, S. epidermidis has acquired resistance to many antibiotics. Among these, methicillin-resistant S. epidermidis (MRSE) were frequently isolated. Similar to methicillin resistant Staphylococcus aureus (MRSA), they also exhibited multi-resistance, which presented a danger to human health. Patrinia scabiosaefolia as traditional Chinese medicine had strong antibacterial activity against MRSE. However, the mechanism of P. scabiosaefolia against MRSE is not clear. Methods: Here, the morphology of cell wall and cell membrane, production of β-lactamase and PBP2, energy metabolism, antioxidant system were systematically studied. Results: The data showed that P. scabiosaefolia damaged the cell wall and membrane. In addition, β-lactamase, energy metabolism and antioxidant system were involved in mechanisms of P. scabiosaefolia against MRSE. Conclusion: These observations provided new understanding of P. scabiosaefolia against MRSE to control MRSE infections.
The hyperproliferation of C. acnes has long been regarded as a primary etiological factor in the development of acne vulgaris (AV). Antibiotics targeting C. acnes have been the mainstay in AV treatment. Meanwhile, C. acnes has developed resistance to numerous antibiotics. IDDS, as traditional Chinese medicine, exhibits potent antibacterial activity against C. acnes. However, the mechanism of IDDS against C. acnes remains unclear. Methods: In this study, we conducted a systematic investigation in vitro to determine the minimal bactericidal concentration (MBC) and time-kill curves. The MBC and time-kill curves were assessed by quantifying Colony Forming Units countsIn order to establish an in vivo rat ear model of acne, a single intradermal injection of 100μL C. acnes suspension was administered, and oleic acid was applied to the right ear pinna for a duration of 14 days. The intervention involved the utilization of IDDS medications. Additionally, the levels of inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were assessed using respective ELISA kits, while Hematoxylin and eosin (HE) staining was employed to visualize the rat ear model. The antimicrobial mechanism was investigated through the analysis of mRNA levels using real-time, quantitative PCR. ELISA analysis was performed according to the protocols outlined for energy metabolism and antioxidant system. Results: Our research has demonstrated that IDDS possesses antibacterial activity against C. acnes both in vitro and in vivo. The mechanisms underlying these effects involve energy metabolism and antioxidant systems. Conclusion:The data has provided further insights into the mechanism of IDDS against C. acnes, which establishes a robust foundation for the clinical application of IDDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.