Unintentionally doped (UID) AlGaN/GaN-based multichannel high electron mobility transistor (MC-HEMT) heterostructures have been demonstrated on the SiC substrate using plasma-assisted molecular beam epitaxy. The MC-HEMT heterostructure with a GaN channel thickness of 100 nm resulted in a cumulative two-dimensional electron gas (2DEG) concentration of 4.3 × 1013 cm−2 across six GaN channels. The sample showed sheet resistances of 170 Ω/sq. and 101 Ω/sq. at room temperature and 90 K, respectively. The source of 2DEG in the buried GaN channels of the heterostructure was investigated. The C–V measurements conducted on UID MC-HEMTs excluded the possibility of the valence band being the source of 2DEG and the consequent formation of two-dimensional hole gas at the buried GaN-channel/AlGaN-barrier interfaces. A comparison of the experimentally obtained 2DEG concentration with the simulated data suggests the presence of donor-like trap states, situated at 0.6 to 0.8 eV above the valence band at the buried GaN-channel/AlGaN-barrier interfaces, which act as the source of 2DEG in UID MC-HEMT heterostructures.
Planar Gunn diodes based on doped GaN active layers with different geometries have been fabricated and characterized. Gunn oscillations have not been observed due to the catastrophic breakdown of the diodes for applied voltages around 20-25 V, much below the bias theoretically needed for the onset of Gunn oscillations. The breakdown of the diodes has been analyzed by pulsed I-V measurements at low temperature, and it has been observed to be almost independent of the geometry of the channels, thus allowing to discard self-heating effects as the origin of the device burning. The other possible mechanism for the device failure is impact-ionization avalanche due to the high electric fields present at the anode corner of the isolating trenches. However, Monte Carlo simulations using the typical value of the intervalley energy separation of GaN, 𝜺 𝟏−𝟐 =2.2 eV, show that impact ionization mechanisms are not significant for the voltages for which the experimental failure is observed. But recent experiments showed that 𝜺 𝟏−𝟐 is lower, around 0.9 eV. This lower intervalley separation leads to a much lower threshold voltage for the Gunn oscillations, not far from the experimental breakdown. Therefore, we attribute the devices failure to an avalanche process just when Gunn domains start to form, since they increase the population of electrons at the high electric field region, thus strongly enhancing impact ionization mechanisms which lead to the diode failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.