Distributional word similarity is most commonly perceived as a symmetric relation. Yet, directional relations are abundant in lexical semantics and in many Natural Language Processing (NLP) settings that require lexical inference, making symmetric similarity measures less suitable for their identification. This paper investigates the nature of directional (asymmetric) similarity measures that aim to quantify distributional feature inclusion. We identify desired properties of such measures for lexical inference, specify a particular measure based on Average Precision that addresses these properties, and demonstrate the empirical benefit of directional measures for two different NLP datasets.
This paper presents a task for machine listening comprehension in the argumentation domain and a corresponding dataset in English. We recorded 200 spontaneous speeches arguing for or against 50 controversial topics. For each speech, we formulated a question, aimed at confirming or rejecting the occurrence of potential arguments in the speech. Labels were collected by listening to the speech and marking which arguments were mentioned by the speaker. We applied baseline methods addressing the task, to be used as a benchmark for future work over this dataset. All data used in this work is freely available for research.
The stream of words produced by Automatic Speech Recognition (ASR) systems is typically devoid of punctuations and formatting. Most natural language processing applications expect segmented and well-formatted texts as input, which is not available in ASR output. This paper proposes a novel technique of jointly modeling multiple correlated tasks such as punctuation and capitalization using bidirectional recurrent neural networks, which leads to improved performance for each of these tasks. This method could be extended for joint modeling of any other correlated sequence labeling tasks.
Distributional word similarity is most commonly perceived as a symmetric relation. Yet, one of its major applications is lexical expansion, which is generally asymmetric. This paper investigates the nature of directional (asymmetric) similarity measures, which aim to quantify distributional feature inclusion. We identify desired properties of such measures, specify a particular one based on averaged precision, and demonstrate the empirical benefit of directional measures for expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.