Previous studies have reported the relationship between effect of caffeine and many diseases. However, studies to evaluate the association between caffeine and hearing loss are contradictory. To examine the relationship of urinary caffeine metabolites with the hearing threshold in US adults, a total of 849 adults aged 20–69 years who participated in the National Health and Nutrition Examination Survey (NHANES, 2011–2012) were enrolled in this study. Urinary caffeine and its 14 metabolites were applied as biomarkers to assess caffeine exposure. Hearing loss was defined as mean pure tone averages > 25 dB HL at 500, 1000, and 2000 Hz in both ears (low frequency); and 3000, 4000, and 6000 Hz in both ears (high frequency). Univariate and multivariate linear regression analyses were conducted to examine the associations of urinary caffeine metabolites with low- and high-frequency hearing thresholds, respectively. Low-frequency hearing loss were 5.08% and 6.10% in male and female participants, respectively; and high-frequency hearing loss were 31.81% and 15.14% in male and female participants, respectively. In the unadjusted model, the P value for trend shows that urinary caffeine metabolites 137X and AAMU were significantly associated with low-frequency PTA, and that 17X, 137X, AAMU were significantly associated with high-frequency PTA, but when the model was adjusted for sex, age, education level, firearm noise exposure, occupational noise exposure, recreational noise exposure, serum cotinine, body mass index, diabetes, hypertension, these were no longer statistically significant. In conclusion, urinary caffeine metabolites were not associated with the hearing threshold shifts in US adults.
Endothelin-1 (ET-1) is a peptide with various biological functions, such as vasoconstriction and cell proliferation. ET-1 was reported to be widely distributed throughout the animal body, including nervous system. The expression and localization of ET-1 and its receptors [endothelin type-A receptor (ETAR) and endothelin type-B receptor (ETBR)] in the spiral ganglion neurons have not been reported before. In this study, their presence in the mouse spiral ganglion neurons was detected at mRNA and protein levels by reverse transcription-polymerase chain reaction (RT-PCR) technique and immunohistochemistry, respectively. RT-PCR analysis indicated that ET-1, ETAR, and ETBR genes were expressed in the mouse spiral ganglion tissues. Immunohistochemical experiments demonstrated that ET-1 and ETAR were predominantly immunoreactive in the cytoplasm, while ETBR was mainly immunostained in the nucleus of the neuron bodies. The present results suggest that ET-1 may play physiological roles in the spiral ganglion cells via ETAR and ETBR.
Meniere Disease (MD) is an idiopathic inner ear disease with complex etiology and pathogenesis, which is still unclear. With the development in gene analysis technology, the genetic research of MD has attracted extensive attention, resulting in a large number of studies on the research of the relationship between human genes and MD. This paper aims to review the studies on this topic in recent years. The studies mainly focused on the genetics of familial MD and the correlation between MD and potentially related functional genes. The results of these studies have demonstrated the complexity and diversity of the pathogenesis of MD with both genetic and epigenetic alterations, suggesting that MD might be related to inflammation, immunity, aqua and ion balance in the lymphatic fluid, virus infection, metabolism, and abnormal function of nerve conduction. The finding of rare mutations in TECTA, MYO7A and OTOG genes and other genes such as CDH23, PCDH15 and ADGRV1 in the same families suggest that the integrity of the stereocilia and their interaction with the tectorial and otolithic membranes could be involved in the pathophysiology of familial MD.
Hearing loss (HL) is a highly prevalent public health concern. Organochlorine pesticides (OCPs) are widely used environmental pollutants harmful to human health. Studies investigating the effects of OCPs exposure on the auditory system in the general population are rare. To explore the association between OCPs exposure and HL in adults, 366 adults aged 20–69 years who participated in the National Health and Nutrition Examination Survey (NHANES, 2003–2004) were investigated. HL was defined as a pure-tone average (PTA) ≥ 20 dB in the better ear. Multivariate linear and logistic regression analyses were conducted to evaluate the association of four selected serum OCPs with PTAs and the risk of HL. In participants aged < 60 years, hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (p, p'-DDE) exposure was positively associated with low- and speech-frequency PTAs, and with low-frequency HL, respectively. Risk of HL increased in the highest tertile compared with the lowest tertile of serum HCB and p, p'-DDE (odds ratio [OR]: 4.38, 95% confidence interval [CI]: 0.97–19.80; OR: 16.66, 95% CI: 2.64–105.09, respectively). In this study of US adults aged < 60 years, HCB and p, p'-DDE exposure was positively associated with HL. HCB and p, p'-DDE may be potential risk factors for HL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.